
Ben Stopford
Foreword by Sam Newman

Concepts and Patterns for Streaming 
Services with Apache Kafka

Designing  
Event-Driven 
Systems

Com
plim

ents of



Ben Stopford

Designing Event-Driven Systems
Concepts and Patterns for Streaming

Services with Apache Kafka

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing



978-1-492-03822-1

[LSI]

Designing Event-Driven Systems
by Ben Stopford

Copyright © 2018 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online edi‐
tions are also available for most titles (http://oreilly.com/safari). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Foster Interior Designer: David Futato

Production Editor: Justin Billing Cover Designer: Karen Montgomery

Copyeditor: Rachel Monaghan Illustrator: Rebecca Demarest

Proofreader: Amanda Kersey

April 2018:  First Edition

Revision History for the First Edition

2018-03-28: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Designing Event-Driven Systems,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsi‐
bility for errors or omissions, including without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or describes is subject
to open source licenses or the intellectual property rights of others, it is your responsibility to ensure
that your use thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Confluent. See our statement of editorial
independence.

http://oreilly.com/safari
mailto:corporate@oreilly.com
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html


Table of Contents

Foreword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi

Part I. Setting the Stage

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

2. The Origins of Streaming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

3. Is Kafka What You Think It Is?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
Kafka Is Like REST but Asynchronous?                                                             13
Kafka Is Like a Service Bus?                                                                                  14
Kafka Is Like a Database?                                                                                      15
What Is Kafka Really? A Streaming Platform                                                    15

4. Beyond Messaging: An Overview of the Kafka Broker. . . . . . . . . . . . . . . . . . . . . . .  17
The Log: An Efficient Structure for Retaining and Distributing Messages   18
Linear Scalability                                                                                                    19
Segregating Load in Multiservice Ecosystems                                                   21
Maintaining Strong Ordering Guarantees                                                         21
Ensuring Messages Are Durable                                                                          22
Load-Balance Services and Make Them Highly Available                               23
Compacted Topics                                                                                                 24
Long-Term Data Storage                                                                                      25
Security                                                                                                                    25
Summary                                                                                                                 25

iii



Part II. Designing Event-Driven Systems

5. Events: A Basis for Collaboration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
Commands, Events, and Queries                                                                         30
Coupling and Message Brokers                                                                            32
Using Events for Notification                                                                               34
Using Events to Provide State Transfer                                                              37
Which Approach to Use                                                                                        38
The Event Collaboration Pattern                                                                         39
Relationship with Stream Processing                                                                  41
Mixing Request- and Event-Driven Protocols                                                   42
Summary                                                                                                                 44

6. Processing Events with Stateful Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45
Making Services Stateful                                                                                       47
Summary                                                                                                                 52

7. Event Sourcing, CQRS, and Other Stateful Patterns. . . . . . . . . . . . . . . . . . . . . . . . .  55
Event Sourcing, Command Sourcing, and CQRS in a Nutshell                     55
Version Control for Your Data                                                                            57
Making Events the Source of Truth                                                                     59
Command Query Responsibility Segregation                                                    61
Materialized Views                                                                                                 62
Polyglot Views                                                                                                        63
Whole Fact or Delta?                                                                                             64
Implementing Event Sourcing and CQRS with Kafka                                     65
Summary                                                                                                                 71

Part III. Rethinking Architecture at Company Scales

8. Sharing Data and Services Across an Organization. . . . . . . . . . . . . . . . . . . . . . . . . .  75
Encapsulation Isn’t Always Your Friend                                                            77
The Data Dichotomy                                                                                             79
What Happens to Systems as They Evolve?                                                       80
Make Data on the Outside a First-Class Citizen                                               83
Don’t Be Afraid to Evolve                                                                                     84
Summary                                                                                                                 85

9. Event Streams as a Shared Source of Truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
A Database Inside Out                                                                                           87
Summary                                                                                                                 90

iv | Table of Contents



10. Lean Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91
If Messaging Remembers, Databases Don’t Have To                                       91
Take Only the Data You Need, Nothing More                                                  92
Rebuilding Event-Sourced Views                                                                        93
Automation and Schema Migration                                                                    94
Summary                                                                                                                 96

Part IV. Consistency, Concurrency, and Evolution

11. Consistency and Concurrency in Event-Driven Systems. . . . . . . . . . . . . . . . . . . . .  101
Eventual Consistency                                                                                          102
The Single Writer Principle                                                                                105
Atomicity with Transactions                                                                              108
Identity and Concurrency Control                                                                    108
Limitations                                                                                                            110
Summary                                                                                                               110

12. Transactions, but Not as We Know Them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111
The Duplicates Problem                                                                                      111
Using the Transactions API to Remove Duplicates                                        114
Exactly Once Is Both Idempotence and Atomic Commit                             115
How Kafka’s Transactions Work Under the Covers                                      116
Store State and Send Events Atomically                                                           118
Do We Need Transactions? Can We Do All This with Idempotence?        119
What Can’t Transactions Do?                                                                            119
Making Use of Transactions in Your Services                                                 120
Summary                                                                                                               120

13. Evolving Schemas and Data over Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123
Using Schemas to Manage the Evolution of Data in Time                            123
Handling Schema Change and Breaking Backward Compatibility              124
Collaborating over Schema Change                                                                  126
Handling Unreadable Messages                                                                         127
Deleting Data                                                                                                        127
Segregating Public and Private Topics                                                              129
Summary                                                                                                               129

Part V. Implementing Streaming Services with Kafka

14. Kafka Streams and KSQL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133
A Simple Email Service Built with Kafka Streams and KSQL                       133

Table of Contents | v



Windows, Joins, Tables, and State Stores                                                         135
Summary                                                                                                               138

15. Building Streaming Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139
An Order Validation Ecosystem                                                                        139
Join-Filter-Process                                                                                               140
Event-Sourced Views in Kafka Streams                                                            141
Collapsing CQRS with a Blocking Read                                                           142
Scaling Concurrent Operations in Streaming Systems                                  142
Rekey to Join                                                                                                         145
Repartitioning and Staged Execution                                                                146
Waiting for N Events                                                                                           147
Reflecting on the Design                                                                                     148
A More Holistic Streaming Ecosystem                                                             148
Summary                                                                                                               150

vi | Table of Contents



1 D. L. Parnas, On the Criteria to Be Used in Decomposing Systems into Modules (Pittsburgh, PA: Carnegie

Mellon University, 1971).

Foreword

For as long as we’ve been talking about services, we’ve been talking about data. In
fact, before we even had the word microservices in our lexicon, back when it was
just good old-fashioned service-oriented architecture, we were talking about
data: how to access it, where it lives, who “owns” it. Data is all-important—vital
for the continued success of our business—but has also been seen as a massive
constraint in how we design and evolve our systems.

My own journey into microservices began with work I was doing to help organi‐
zations ship software more quickly. This meant a lot of time was spent on things
like cycle time analysis, build pipeline design, test automation, and infrastructure
automation. The advent of the cloud was a huge boon to the work we were
doing, as the improved automation made us even more productive. But I kept
hitting some fundamental issues. All too often, the software wasn’t designed in a
way that made it easy to ship. And data was at the heart of the problem.

Back then, the most common pattern I saw for service-based systems was sharing
a database among multiple services. The rationale was simple: the data I need is
already in this other database, and accessing a database is easy, so I’ll just reach in
and grab what I need. This may allow for fast development of a new service, but
over time it becomes a major constraint.

As I expanded upon in my book, Building Microservices, a shared database cre‐
ates a huge coupling point in your architecture. It becomes difficult to under‐
stand what changes can be made to a schema shared by multiple services. David
Parnas1 showed us back in 1971 that the secret to creating software whose parts
could be changed independently was to hide information between modules. But
at a swoop, exposing a schema to multiple services prohibits our ability to inde‐
pendently evolve our codebases.

Foreword | vii

http://shop.oreilly.com/product/0636920033158.do


As the needs and expectations of software changed, IT organizations changed
with them. The shift from siloed IT toward business- or product-aligned teams
helped improve the customer focus of those teams. This shift often happened in
concert with the move to improve the autonomy of those teams, allowing them
to develop new ideas, implement them, and then ship them, all while reducing
the need for coordination with other parts of the organization. But highly cou‐
pled architectures require heavy coordination between systems and the teams
that maintain them—they are the enemy of any organization that wants to opti‐
mize autonomy.

Amazon spotted this many years ago. It wanted to improve team autonomy to
allow the company to evolve and ship software more quickly. To this end, Ama‐
zon created small, independent teams who would own the whole lifecycle of
delivery. Steve Yegge, after leaving Amazon for Google, attempted to capture
what it was that made those teams work so well in his infamous (in some circles)
“Platform Rant”. In it, he outlined the mandate from Amazon CEO Jeff Bezos
regarding how teams should work together and how they should design systems.
These points in particular resonate for me:

1) All teams will henceforth expose their data and functionality through service
interfaces.

2) Teams must communicate with each other through these interfaces.

3) There will be no other form of interprocess communication allowed: no direct
linking, no direct reads of another team’s datastore, no shared-memory model, no
backdoors whatsoever. The only communication allowed is via service interface
calls over the network.

In my own way, I came to the realization that how we store and share data is key
to ensuring we develop loosely coupled architectures. Well-defined interfaces are
key, as is hiding information. If we need to store data in a database, that database
should be part of a service, and not accessed directly by other services. A well-
defined interface should guide when and how that data is accessed and manipu‐
lated.

Much of my time over the past several years has been taken up with pushing this
idea. But while people increasingly get it, challenges remain. The reality is that
services do need to work together and do sometimes need to share data. How do
you do that effectively? How do you ensure that this is done in a way that is sym‐
pathetic to your application’s latency and load conditions? What happens when
one service needs a lot of information from another?

Enter streams of events, specifically the kinds of streams that technology like
Kafka makes possible. We’re already using message brokers to exchange events,
but Kafka’s ability to make that event stream persistent allows us to consider a
new way of storing and exchanging data without losing out on our ability to cre‐
ate loosely coupled autonomous architectures. In this book, Ben talks about the

viii | Foreword

https://gist.github.com/chitchcock/1281611


idea of “turning the database inside out”—a concept that I suspect will get as
many skeptical responses as I did back when I was suggesting moving away from
giant shared databases. But after the last couple of years I’ve spent exploring
these ideas with Ben, I can’t help thinking that he and the other people working
on these concepts and technology (and there is certainly lots of prior art here)
really are on to something.

I’m hopeful that the ideas outlined in this book are another step forward in how
we think about sharing and exchanging data, helping us change how we build
microservice architecture. The ideas may well seem odd at first, but stick with
them. Ben is about to take you on a very interesting journey.

—Sam Newman

Foreword | ix





Preface

In 2006 I was working at ThoughtWorks, in the UK. There was a certain energy
to the office at that time, with lots of interesting things going on. The Agile
movement was in full bloom, BDD (behavior-driven development) was flourish‐
ing, people were experimenting with Event Sourcing, and SOA (service-oriented
architecture) was being adapted to smaller projects to deal with some of the
issues we’d seen in larger implementations.

One project I worked on was led by Dave Farley, an energetic and cheerful fellow
who managed to transfer his jovial bluster into pretty much everything we did.
The project was a relatively standard, medium-sized enterprise application. It
had a web portal where customers could request a variety of conveyancing serv‐
ices. The system would then run various synchronous and asynchronous pro‐
cesses to put the myriad of services they requested into action.

There were a number of interesting elements to that particular project, but the
one that really stuck with me was the way the services communicated. It was the
first system I’d worked on that was built solely from a collaboration of events.
Having worked with a few different service-based systems before, all built with
RPCs (remote procedure calls) or request-response messaging, I thought this one
felt very different. There was something inherently spritely about the way you
could plug new services right into the event stream, and something deeply satis‐
fying about tailing the log of events and watching the “narrative” of the system
whizz past.

A few years later, I was working at a large financial institution that wanted to
build a data service at the heart of the company, somewhere applications could
find the important datasets that made the bank work—trades, valuations, refer‐
ence data, and the like. I find this sort of problem quite compelling: it was techni‐
cally challenging and, although a number of banks and other large companies
had taken this kind of approach before, it felt like the technology had moved on
to a point where we could build something really interesting and transformative.

Preface | xi



Yet getting the technology right was only the start of the problem. The system
had to interface with every major department, and that meant a lot of stakehold‐
ers with a lot of requirements, a lot of different release schedules, and a lot of
expectations around uptime. I remember discussing the practicalities of the
project as we talked our design through in a two-week stakeholder kick-off meet‐
ing. It seemed a pretty tall order, not just technically, but organizationally, but it
also seemed plausible.

So we pulled together a team, with a bunch of people from ThoughtWorks and
Google and a few other places, and the resulting system had some pretty interest‐
ing properties. The datastore held queryable data in memory, spread over 35
machines per datacenter, so it could handle being hit from a compute grid.
Writes went directly through the query layer into a messaging system, which
formed (somewhat unusually for the time) the system of record. Both the query
layer and the messaging layer were designed to be sharded so they could scale
linearly. So every insert or update was also a published event, and there was no
side-stepping it either; it was baked into the heart of the architecture.

The interesting thing about making messaging the system of record is you find
yourself repurposing the data stream to do a whole variety of useful things:
recording it on a filesystem for recovery, pushing it to another datacenter, hyd‐
rating a set of databases for reporting and analytics, and, of course, broadcasting
it to anyone with the API who wants to listen.

But the real importance of using messaging as a system of record evaded me
somewhat at the time. I remember speaking about the project at QCon, and there
were more questions about the lone “messaging as a system of record” slide,
which I’d largely glossed over, than there were about the fancy distributed join
layer that the talk had focused on. So it slowly became apparent that, for all its
features—the data-driven precaching that made joins fast, the SQL-over-
Document interface, the immutable data model, and late-bound schema—what
most customers needed was really subtly different, and somewhat simpler. While
they would start off making use of the data service directly, as time passed, some
requirement would often lead them to take a copy, store it independently, and do
their own thing. But despite this, they still found the central dataset useful and
would often take a subset, then later come back for more. So, on reflection, it
seemed that a messaging system optimized to hold datasets would be more
appropriate than a database optimized to publish them. A little while later Con‐
fluent formed, and Kafka seemed a perfect solution for this type of problem.

The interesting thing about these two experiences (the conveyancing application
and the bank-wide data service) is that they are more closely related than they
may initially appear. The conveyancing application had been wonderfully collab‐
orative, yet pluggable. At the bank, a much larger set of applications and services
integrated through events, but also leveraged a historic reference they could go

xii | Preface



back to and query. So the contexts were quite different—the first was a single
application, the second a company—but much of the elegance of both systems
came from their use of events.

Streaming systems today are in many ways quite different from both of these
examples, but the underlying patterns haven’t really changed all that much. Nev‐
ertheless, the devil is in the details, and over the last few years we’ve seen clients
take a variety of approaches to solving both of these kinds of problems, along
with many others. Problems that both distributed logs and stream processing
tools are well suited to, and I’ve tried to extract the key elements of these
approaches in this short book.

How to Read This Book
The book is arranged into five sections. Part I sets the scene, with chapters that
introduce Kafka and stream processing and should provide even seasoned practi‐
tioners with a useful overview of the base concepts. In Part II you’ll find out how
to build event-driven systems, how such systems relate to stateful stream pro‐
cessing, and how to apply patterns like Event Collaboration, Event Sourcing, and
CQRS. Part III is more conceptual, building on the ideas from Part II, but apply‐
ing them at the level of whole organizations. Here we question many of the com‐
mon approaches used today, and dig into patterns like event streams as a source
of truth. Part IV and Part V are more practical. Part V starts to dip into a little
code, and there is an associated GitHub project to help you get started if you
want to build fine-grained services with Kafka Streams.

The introduction given in Chapter 1 provides a high-level overview of the main
concepts covered in this book, so it is a good place to start.

Acknowledgments
Many people contributed to this book, both directly and indirectly, but a special
thanks to Jay Kreps, Sam Newman, Edward Ribeiro, Gwen Shapira, Steve Coun‐
sell, Martin Kleppmann, Yeva Byzek, Dan Hanley, Tim Bergland, and of course
my ever-patient wife, Emily.

Preface | xiii





PART I

Setting the Stage

The truth is the log.

—Pat Helland, “Immutability Changes Everything,” 2015





CHAPTER 1

Introduction

While the main focus of this book is the building of event-driven systems of dif‐
ferent sizes, there is a deeper focus on software that spans many teams. This is
the realm of service-oriented architectures: an idea that arose around the start of
the century, where a company reconfigures itself around shared services that do
commonly useful things.

This idea became quite popular. Amazon famously banned all intersystem com‐
munications by anything that wasn’t a service interface. Later, upstart Netflix
went all in on microservices, and many other web-based startups followed suit.
Enterprise companies did similar things, but often using messaging systems,
which have a subtly different dynamic. Much was learned during this time, and
there was significant progress made, but it wasn’t straightforward.

One lesson learned, which was pretty ubiquitous at the time, was that service-
based approaches significantly increased the probability of you getting paged at 3
a.m., when one or more services go down. In hindsight, this shouldn’t have been
surprising. If you take a set of largely independent applications and turn them
into a web of highly connected ones, it doesn’t take too much effort to imagine
that one important but flaky service can have far-reaching implications, and in
the worst case bring the whole system to a halt. As Steve Yegge put it in his
famous Amazon/Google post, “Organizing into services taught teams not to trust
each other in most of the same ways they’re not supposed to trust external devel‐
opers.”

What did work well for Amazon, though, was the element of organizational
change that came from being wholeheartedly service based. Service teams think
of their software as being a cog in a far larger machine. As Ian Robinson put it,
“Be of the web, not behind the web.” This was a huge shift from the way people
built applications previously, where intersystem communication was something
teams reluctantly bolted on as an afterthought. But the services model made

3

https://gist.github.com/chitchcock/1281611
https://gist.github.com/chitchcock/1281611


interaction a first-class entity. Suddenly your users weren’t just customers or
businesspeople; they were other applications, and they really cared that your ser‐
vice was reliable. So applications became platforms, and building platforms is
hard.

LinkedIn felt this pain as it evolved away from its original, monolithic Java appli‐
cation into 800–1,100 services. Complex dependencies led to instability, version‐
ing issues caused painful lockstep releases, and early on, it wasn’t clear that the
new architecture was actually an improvement.

One difference in the way LinkedIn evolved its approach was its use of a messag‐
ing system built in-house: Kafka. Kafka added an asynchronous publish-
subscribe model to the architecture that enabled trillions of messages a day to be
transported around the organization. This was important for a company in
hypergrowth, as it allowed new applications to be plugged in without disturbing
the fragile web of synchronous interactions that drove the frontend.

But this idea of rearchitecting a system around events isn’t new—event-driven
architectures have been around for decades, and technologies like enterprise
messaging are big business, particularly with (unsurprisingly) enterprise compa‐
nies. Most enterprises have been around for a long time, and their systems have
grown organically, over many iterations or through acquisition. Messaging sys‐
tems naturally fit these complex and disconnected worlds for the same reasons
observed at LinkedIn: events decouple, and this means different parts of the
company can operate independently of one another. It also means it’s easier to
plug new systems into the real time stream of events.

A good example is the regulation that hit the finance industry in January 2018,
which states that trading activity has to be reported to a regulator within one
minute of it happening. A minute may seem like a long time in computing terms,
but it takes only one batch-driven system, on the critical path in one business
silo, for that to be unattainable. So the banks that had gone to the effort of instal‐
ling real-time trade eventing, and plumbed it across all their product-aligned
silos, made short work of these regulations. For the majority that hadn’t it was a
significant effort, typically resulting in half-hearted, hacky solutions.

So enterprise companies start out complex and disconnected: many separate,
asynchronous islands—often with users of their own—operating independently
of one another for the most part. Internet companies are different, starting life as
simple, front-facing web applications where users click buttons and expect things
to happen. Most start as monoliths and stay that way for some time (arguably for
longer than they should). But as internet companies grow and their business gets
more complex, they see a similar shift to asynchronicity. New teams and depart‐
ments are introduced and they need to operate independently, freed from the
synchronous bonds that tie the frontend. So ubiquitous desires for online utilit‐
ies, like making a payment or updating a shopping basket, are slowly replaced by

4 | Chapter 1: Introduction

https://on.ft.com/2G9FcE2


a growing need for datasets that can be used, and evolved, without any specific
application lock-in.

But messaging is no panacea. Enterprise service buses (ESBs), for example, have
vocal detractors and traditional messaging systems have a number of issues of
their own. They are often used to move data around an organization, but the
absence of any notion of history limits their value. So, even though recent events
typically have more value than old ones, business operations still need historical
data—whether it’s users wanting to query their account history, some service
needing a list of customers, or analytics that need to be run for a management
report.

On the other hand, data services with HTTP-fronted interfaces make lookups
simple. Anyone can reach in and run a query. But they don’t make it so easy to
move data around. To extract a dataset you end up running a query, then period‐
ically polling the service for changes. This is a bit of a hack, and typically the
operators in charge of the service you’re polling won’t thank you for it.

But replayable logs, like Kafka, can play the role of an event store: a middle
ground between a messaging system and a database. (If you don’t know Kafka,
don’t worry—we dive into it in Chapter 4.) Replayable logs decouple services
from one another, much like a messaging system does, but they also provide a
central point of storage that is fault-tolerant and scalable—a shared source of
truth that any application can fall back to.

A shared source of truth turns out to be a surprisingly useful thing. Microservi‐
ces, for example, don’t share their databases with one another (referred to as the
IntegrationDatabase antipattern). There is a good reason for this: databases have
very rich APIs that are wonderfully useful on their own, but when widely shared
they make it hard to work out if and how one application is going to affect oth‐
ers, be it data couplings, contention, or load. But the business facts that services
do choose to share are the most important facts of all. They are the truth that the
rest of the business is built on. Pat Helland called out this distinction back in
2006, denoting it “data on the outside.”

But a replayable log provides a far more suitable place to hold this kind of data
because (somewhat counterintuitively) you can’t query it! It is purely about stor‐
ing data and pushing it to somewhere new. This idea of pure data movement is
important, because data on the outside—the data services share—is the most
tightly coupled of all, and the more services an ecosystem has, the more tightly
coupled this data gets. The solution is to move data somewhere that is more
loosely coupled, so that means moving it into your application where you can
manipulate it to your heart’s content. So data movement gives applications a
level of operability and control that is unachievable with a direct, runtime
dependency. This idea of retaining control turns out to be important—it’s the
same reason the shared database pattern doesn’t work out well in practice.

Introduction | 5

https://www.thoughtworks.com/radar/tools/esb
http://bit.ly/2um1Q6W
http://bit.ly/2DWuVFm


So, this replayable log–based approach has two primary benefits. First, it makes it
easy to react to events that are happening now, with a toolset specifically
designed for manipulating them. Second, it provides a central repository that can
push whole datasets to wherever they may be needed. This is pretty useful if you
run a global business with datacenters spread around the world, need to boot‐
strap or prototype a new project quickly, do some ad hoc data exploration, or
build a complex service ecosystem that can evolve freely and independently.

So there are some clear advantages to the event-driven approach (and there are
of course advantages for the REST/RPC models too). But this is, in fact, only half
the story. Streaming isn’t simply an alternative to RPCs that happens to work
better for highly connected use cases; it’s a far more fundamental change in
mindset that involves rethinking your business as an evolving stream of data, and
your services as functions that transform these streams of data into something
new.

This can feel unnatural. Many of us have been brought up with programming
styles where we ask questions or issue commands and wait for answers. This is
how procedural or object-oriented programs work, but the biggest culprit is
probably the database. For nearly half a century databases have played a central
role in system design, shaping—more than any other tool—the way we write
(and think about) programs. This has been, in some ways, unfortunate.

As we move from chapter to chapter, this book builds up a subtly different
approach to dealing with data, one where the database is taken apart, unbundled,
deconstructed, and turned inside out. These concepts may sound strange or even
novel, but they are, like many things in software, evolutions of older ideas that
have arisen somewhat independently in various technology subcultures. For
some time now, mainstream programmers have used event-driven architectures,
Event Sourcing, and CQRS (Command Query Responsibility Segregation) as a
means to break away from the pains of scaling database-centric systems. The big
data space encountered similar issues as multiterabyte-sized datasets highlighted
the inherent impracticalities of batch-driven data management, which in turn led
to a pivot toward streaming. The functional world has sat aside, somewhat know‐
ingly, periodically tugging at the imperative views of the masses.

But these disparate progressions—turning the database inside out, destructuring,
CQRS, unbundling—all have one thing in common. They are all simple
metaphors for the need to separate the conflation of concepts embedded into
every database we use, to decouple them so that we can manage them separately
and hence efficiently.

There are a number of reasons for wanting to do this, but maybe the most
important of all is that it lets us build larger and more functionally diverse sys‐
tems. So while a database-centric approach works wonderfully for individual
applications, we don’t live in a world of individual applications. We live in a

6 | Chapter 1: Introduction

https://oreil.ly/2pEu0V0
http://bit.ly/1mjeyJg


world of interconnected systems—individual components that, while all valuable
in themselves, are really part of a much larger puzzle. We need a mechanism for
sharing data that complements this complex, interconnected world. Events lead
us to this. They constantly push data into our applications. These applications
react, blending streams together, building views, changing state, and moving
themselves forward. In the streaming model there is no shared database. The
database is the event stream, and the application simply molds it into something
new.

In fairness, streaming systems still have database-like attributes such as tables
(for lookups) and transactions (for atomicity), but the approach has a radically
different feel, more akin to functional or dataflow languages (and there is much
cross-pollination between the streaming and functional programming communi‐
ties).

So when it comes to data, we should be unequivocal about the shared facts of our
system. They are the very essence of our business, after all. Facts may be evolved
over time, applied in different ways, or even recast to different contexts, but they
should always tie back to a single thread of irrevocable truth, one from which all
others are derived—a central nervous system that underlies and drives every
modern digital business.

This book looks quite specifically at the application of Apache Kafka to this
problem. In Part I we introduce streaming and take a look at how Kafka works.
Part II focuses on the patterns and techniques needed to build event-driven pro‐
grams: Event Sourcing, Event Collaboration, CQRS, and more. Part III takes
these ideas a step further, applying them in the context of multiteam systems,
including microservices and SOA, with a focus on event streams as a source of
truth and the aforementioned idea that both systems and companies can be
reimagined as a database turned inside out. In the final part, we take a slightly
more practical focus, building a small streaming system using Kafka Streams
(and KSQL).

Introduction | 7

https://thght.works/2uin5Xb
https://thght.works/2uin5Xb
http://bit.ly/confluent-inside-out




CHAPTER 2

The Origins of Streaming

This book is about building business systems with stream processing tools, so it
is useful to have an appreciation for where stream processing came from. The
maturation of this toolset, in the world of real-time analytics, has heavily influ‐
enced the way we build event-driven systems today.

Figure 2-1 shows a stream processing system used to ingest data from several
hundred thousand mobile devices. Each device sends small JSON messages to
denote applications on each mobile phone that are being opened, being closed,
or crashing. This can be used to look for instability—that is, where the ratio of
crashes to usage is comparatively high.

Figure 2-1. A typical streaming application that ingests data from mobile devices
into Kafka, processes it in a streaming layer, and then pushes the result to a serving
layer where it can be queried

9



The mobile devices land their data into Kafka, which buffers it until it can be
extracted by the various applications that need to put it to further use. For this
type of workload the cluster would be relatively large; as a ballpark figure Kafka
ingests data at network speed, but the overhead of replication typically divides
that by three (so a three-node 10 GbE cluster will ingest around 1 GB/s in prac‐
tice).

To the right of Kafka in Figure 2-1 sits the stream processing layer. This is a clus‐
tered application, where queries are either defined up front via the Java DSL or
sent dynamically via KSQL, Kafka’s SQL-like stream processing language. Unlike
in a traditional database, these queries compute continuously, so every time an
input arrives in the stream processing layer, the query is recomputed, and a result
is emitted if the value of the query has changed.

Once a new message has passed through all streaming computations, the result
lands in a serving layer from which it can be queried. Cassandra is shown in
Figure 2-1, but pushing to HDFS (Hadoop Distributed File System), pushing to
another datastore, or querying directly from Kafka Streams using its interactive
queries feature are all common approaches as well.

To understand streaming better, it helps to look at a typical query. Figure 2-2
shows one that computes the total number of app crashes per day. Every time a
new message comes in, signifying that an application crashed, the count of total
crashes for that application will be incremented. Note that this computation
requires state: the count for the day so far (i.e., within the window duration)
must be stored so that, should the stream processor crash/restart, the count will
continue where it was before. Kafka Streams and KSQL manage this state inter‐
nally, and that state is backed up to Kafka via a changelog topic. This is discussed
in more detail in “Windows, Joins, Tables, and State Stores” on page 135 in Chap‐
ter 14.

Figure 2-2. A simple KSQL query that evaluates crashes per day

Multiple queries of this type can be chained together in a pipeline. In Figure 2-3,
we break the preceding problem into three steps chained over two stages. Queries
(a) and (b) continuously compute apps opened per day and apps crashed per
day, respectively. The two resulting output streams are combined together in the

10 | Chapter 2: The Origins of Streaming

https://www.confluent.io/product/ksql/
http://bit.ly/2DWv0Jf
http://bit.ly/2DWv0Jf


final stage (c), which computes application stability by calculating the ratio
between crashes and usage and comparing it to a fixed bound.

Figure 2-3. Two initial stream processing queries are pushed into a third to create a
pipeline

There are a few other things to note about this streaming approach:

The streaming layer is fault-tolerant
It runs as a cluster on all available nodes. If one node exits, another will pick
up where it left off. Likewise, you can scale out the cluster by adding new
processing nodes. Work, and any required state, will automatically be rerou‐
ted to make use of these new resources.

Each stream processor node can hold state of its own
This is required for buffering as well as holding whole tables, for example, to
do enrichments (streams and tables are discussed in more detail in “Win‐
dows, Joins, Tables, and State Stores” on page 135 in Chapter 14). This idea of
local storage is important, as it lets the stream processor perform fast,
message-at-a-time queries without crossing the network—a necessary fea‐
ture for the high-velocity workloads seen in internet-scale use cases. But this
ability to internalize state in local stores turns out to be useful for a number
of business-related use cases too, as we discuss later in this book.

Each stream processor can write and store local state
Making message-at-a-time network calls isn’t a particularly good idea when
you’re handling a high-throughput event stream. For this reason stream pro‐
cessors write data locally (so writes and reads are fast) and back those writes

The Origins of Streaming | 11



up to Kafka. So, for example, the aforementioned count requires a running
total to be tracked so that, should a crash and restart occur, the computation
resumes from its previous position and the count remains accurate. This
ability to store data locally is very similar conceptually to the way you might
interact with a database in a traditional application. But unlike in a tradi‐
tional two-tier application, where interacting with the database means mak‐
ing a network call, in stream processing all the state is local (you might think
of it as a kind of cache), so it is fast to access—no network calls needed.
Because it is also flushed back to Kafka, it inherits Kafka’s durability guaran‐
tees. We discuss this in more detail in “Scaling Concurrent Operations in
Streaming Systems” on page 142 in Chapter 15.

12 | Chapter 2: The Origins of Streaming



CHAPTER 3

Is Kafka What You Think It Is?

There is an old parable about an elephant and a group of blind men. None of the
men had come across an elephant before. One blind man approaches the leg and
declares, “It’s like a tree.” Another man approaches the tail and declares, “It’s like
a rope.” A third approaches the trunk and declares, “It’s like a snake.” So each
blind man senses the elephant from his particular point of view, and comes to a
subtly different conclusion as to what an elephant is. Of course the elephant is
like all these things, but it is really just an elephant!

Likewise, when people learn about Kafka they often see it from a certain view‐
point. These perspectives are usually accurate, but highlight only some subsec‐
tion of the whole platform. In this chapter we look at some common points of
view.

Kafka Is Like REST but Asynchronous?
Kafka provides an asynchronous protocol for connecting programs together, but
it is undoubtedly a bit different from, say, TCP (transmission control protocol),
HTTP, or an RPC protocol. The difference is the presence of a broker. A broker is
a separate piece of infrastructure that broadcasts messages to any programs that
are interested in them, as well as storing them for as long as is needed. So it’s per‐
fect for streaming or fire-and-forget messaging.

Other use cases sit further from its home ground. A good example is request-
response. Say you have a service for querying customer information. So you call a

getCustomer() method, passing a CustomerId, and get a document describing a
customer in the reply. You can build this type of request-response interaction
with Kafka using two topics: one that transports the request and one that trans‐
ports the response. People build systems like this, but in such cases the broker
doesn’t contribute all that much. There is no requirement for broadcast. There is

13



also no requirement for storage. So this leaves the question: would you be better
off using a stateless protocol like HTTP?

So Kafka is a mechanism for programs to exchange information, but its home
ground is event-based communication, where events are business facts that have
value to more than one service and are worth keeping around.

Kafka Is Like a Service Bus?
If we consider Kafka as a messaging system—with its Connect interface, which
pulls data from and pushes data to a wide range of interfaces and datastores, and
streaming APIs that can manipulate data in flight—it does look a little like an
ESB (enterprise service bus). The difference is that ESBs focus on the integration
of legacy and off-the-shelf systems, using an ephemeral and comparably low-
throughput messaging layer, which encourages request-response protocols (see
the previous section).

Kafka, however, is a streaming platform, and as such puts emphasis on high-
throughput events and stream processing. A Kafka cluster is a distributed system
at heart, providing high availability, storage, and linear scale-out. This is quite
different from traditional messaging systems, which are limited to a single
machine, or if they do scale outward, those scalability properties do not stretch
from end to end. Tools like Kafka Streams and KSQL allow you to write simple
programs that manipulate events as they move and evolve. These make the pro‐
cessing capabilities of a database available in the application layer, via an API,
and outside the confines of the shared broker. This is quite important.

ESBs are criticized in some circles. This criticism arises from the way the technol‐
ogy has been built up over the last 15 years, particularly where ESBs are con‐
trolled by central teams that dictate schemas, message flows, validation, and even
transformation. In practice centralized approaches like this can constrain an
organization, making it hard for individual applications and services to evolve at
their own pace.

ThoughtWorks called this out recently, encouraging users to steer clear of recre‐
ating the issues seen in ESBs with Kafka. At the same time, the company encour‐
aged users to investigate event streaming as a source of truth, which we discuss in
Chapter 9. Both of these represent sensible advice.

So Kafka may look a little like an ESB, but as we’ll see throughout this book, it is
very different. It provides a far higher level of throughput, availability, and stor‐
age, and there are hundreds of companies routing their core facts through a sin‐
gle Kafka cluster. Beyond that, streaming encourages services to retain control,
particularly of their data, rather than providing orchestration from a single, cen‐
tral team or platform. So while having one single Kafka cluster at the center of an
organization is quite common, the pattern works because it is simple—nothing

14 | Chapter 3: Is Kafka What You Think It Is?

https://www.thoughtworks.com/radar/tools/esb
https://thght.works/2GdFYMq
https://thght.works/2uin5Xb


more than data transfer and storage, provided at scale and high availability. This
is emphasized by the core mantra of event-driven services: Centralize an immut‐
able stream of facts. Decentralize the freedom to act, adapt, and change.

Kafka Is Like a Database?
Some people like to compare Kafka to a database. It certainly comes with similar
features. It provides storage; production topics with hundreds of terabytes are
not uncommon. It has a SQL interface that lets users define queries and execute
them over the data held in the log. These can be piped into views that users can
query directly. It also supports transactions. These are all things that sound quite
“databasey” in nature!

So many of the elements of a traditional database are there, but if anything, Kafka
is a database inside out (see “A Database Inside Out” on page 87 in Chapter 9), a
tool for storing data, processing it in real time, and creating views. And while you
are perfectly entitled to put a dataset in Kafka, run a KSQL query over it, and get
an answer—much like you might in a traditional database—KSQL and Kafka
Streams are optimized for continual computation rather than batch processing.

So while the analogy is not wholly inaccurate, it is a little off the mark. Kafka is
designed to move data, operating on that data as it does so. It’s about real-time
processing first, long-term storage second.

What Is Kafka Really? A Streaming Platform
As Figure 3-1 illustrates, Kafka is a streaming platform. At its core sits a cluster of
Kafka brokers (discussed in detail in Chapter 4). You can interact with the cluster
through a wide range of client APIs in Go, Scala, Python, REST, and more.

There are two APIs for stream processing: Kafka Streams and KSQL (which we
discuss in Chapter 14). These are database engines for data in flight, allowing
users to filter streams, join them together, aggregate, store state, and run arbi‐
trary functions over the evolving dataflow. These APIs can be stateful, which
means they can hold data tables much like a regular database (see “Making Serv‐
ices Stateful” on page 47 in Chapter 6).

The third API is Connect. This has a whole ecosystem of connectors that inter‐
face with different types of database or other endpoints, both to pull data from
and push data to Kafka. Finally there is a suite of utilities—such as Replicator and
Mirror Maker, which tie disparate clusters together, and the Schema Registry,
which validates and manages schemas—applied to messages passed through
Kafka and a number of other tools in the Confluent platform.

A streaming platform brings these tools together with the purpose of turning
data at rest into data that flows through an organization. The analogy of a central

Kafka Is Like a Database? | 15

https://www.confluent.io/blog/stream-data-platform-1/
https://www.confluent.io/product/connectors/


nervous system is often used. The broker’s ability to scale, store data, and run
without interruption makes it a unique tool for connecting many disparate appli‐
cations and services across a department or organization. The Connect interface
makes it easy to evolve away from legacy systems, by unlocking hidden datasets
and turning them into event streams. Stream processing lets applications and
services embed logic directly over these resulting streams of events.

Figure 3-1. The core components of a streaming platform

16 | Chapter 3: Is Kafka What You Think It Is?



CHAPTER 4

Beyond Messaging: An Overview of the
Kafka Broker

A Kafka cluster is essentially a collection of files, filled with messages, spanning
many different machines. Most of Kafka’s code involves tying these various indi‐
vidual logs together, routing messages from producers to consumers reliably,
replicating for fault tolerance, and handling failure gracefully. So it is a messaging
system, at least of sorts, but it’s quite different from the message brokers that pre‐
ceded it. Like any technology, it comes with both pros and cons, and these shape
the design of the systems we write. This chapter examines the Kafka broker (i.e.,
the server component) from the context of building business systems. We’ll
explore a little about how it works, as well as dipping into the less conventional
use cases it supports like data storage, dynamic failover, and bandwidth protec‐
tion.

Originally built to distribute the datasets created by large social networks, Kafka
was predominantly shaped by a need to operate at scale, in the face of failure.
Accordingly, its architecture inherits more from storage systems like HDFS,
HBase, or Cassandra than it does from traditional messaging systems that imple‐
ment JMS (Java Message Service) or AMQP (Advanced Message Queuing Proto‐
col).

Like many good outcomes in computer science, this scalability comes largely
from simplicity. The underlying abstraction is a partitioned log—essentially a set
of append-only files spread over a number of machines—which encourages
sequential access patterns that naturally flow with the grain of the underlying
hardware.

A Kafka cluster is a distributed system, spreading data over many machines both
for fault tolerance and for linear scale-out. The system is designed to handle a
range of use cases, from high-throughput streaming, where only the latest mes‐

17

http://bit.ly/2G57e3A
http://bit.ly/1KNslOo
http://bit.ly/1KNslOo
http://bit.ly/2vjpJv9


sages matter, to mission-critical use cases where messages and their relative
ordering must be preserved with the same guarantees as you’d expect from a
DBMS (database management system) or storage system. The price paid for this
scalability is a slightly simpler contract that lacks some of the obligations of JMS
or AMQP, such as message selectors.

But this change of tack turns out to be quite important. Kafka’s throughput prop‐
erties make moving data from process to process faster and more practical than
with previous technologies. Its ability to store datasets removes the queue-depth
problems that plagued traditional messaging systems. Finally, its rich APIs, par‐
ticularly Kafka Streams and KSQL, provide a unique mechanism for embedding
data processing directly inside client programs. These attributes have led to its
use as a message and storage backbone for service estates in a wide variety of
companies that need all of these capabilities.

The Log: An Efficient Structure for Retaining and
Distributing Messages
At the heart of the Kafka messaging system sits a partitioned, replayable log. The
log-structured approach is itself a simple idea: a collection of messages, appended
sequentially to a file. When a service wants to read messages from Kafka, it
“seeks” to the position of the last message it read, then scans sequentially, reading
messages in order while periodically recording its new position in the log (see
Figure 4-1).

Figure 4-1. A log is an append-only journal

Taking a log-structured approach has an interesting side effect. Both reads and
writes are sequential operations. This makes them sympathetic to the underlying
media, leveraging prefetch, the various layers of caching, and naturally batching
operations together. This in turn makes them efficient. In fact, when you read
messages from Kafka, the server doesn’t even import them into the JVM (Java
virtual machine). Data is copied directly from the disk buffer to the network

18 | Chapter 4: Beyond Messaging: An Overview of the Kafka Broker

https://ibm.co/2umAEET
https://ibm.co/2umAEET
https://en.wikipedia.org/wiki/Transaction_log


buffer (zero copy)—an opportunity afforded by the simplicity of both the con‐
tract and the underlying data structure.

So batched, sequential operations help with overall performance. They also make
the system well suited to storing messages longer term. Most traditional message
brokers are built with index structures—hash tables or B-trees—used to manage
acknowledgments, filter message headers, and remove messages when they have
been read. But the downside is that these indexes must be maintained, and this
comes at a cost. They must be kept in memory to get good performance, limiting
retention significantly. But the log is O(1) when either reading or writing mes‐
sages to a partition, so whether the data is on disk or cached in memory matters
far less.

There are a few implications to this log-structured approach. If a service has
some form of outage and doesn’t read messages for a long time, the backlog
won’t cause the infrastructure to slow significantly (a common problem with tra‐
ditional brokers, which have a tendency to slow down as they get full). Being log-
structured also makes Kafka well suited to performing the role of an event store,
for those who like to apply Event Sourcing within their services. This subject is
discussed in depth in Chapter 7.

Partitions and Partitioning
Partitions are a fundamental concept for most distributed data systems. A parti‐
tion is just a bucket that data is put into, much like buckets used to group data in
a hash table. In Kafka’s terminology each log is a replica of a partition held on a
different machine. (So one partition might be replicated three times for high
availability. Each replica is a separate log with the same data inside it.) What data
goes into each partition is determined by a partitioner, coded into the Kafka pro‐
ducer. The partitioner will either spread data across the available partitions in a
round-robin fashion or, if a key is provided with the message, use a hash of the
key to determine the partition number. This latter point ensures that messages
with the same key are always sent to the same partition and hence are strongly
ordered.

Linear Scalability
As we’ve discussed, logs provide a hardware-sympathetic data structure for mes‐
saging workloads, but Kafka is really many logs, spanning many different
machines. The system ties these together, routing messages reliably, replicating
for fault tolerance, and handling failure gracefully.

While running on a single machine is possible, production clusters typically start
at three machines with larger clusters in the hundreds. When you read and write

Linear Scalability | 19

https://ibm.co/2umAEET
https://ibm.co/2umAEET
https://martinfowler.com/eaaDev/EventSourcing.html


to a topic, you’ll typically be reading and writing to all of them, partitioning your
data over all the machines you have at your disposal. Scaling is thus a pretty sim‐
ple affair: add new machines and rebalance. Consumption can also be performed
in parallel, with messages in a topic being spread over several consumers in a
consumer group (see Figure 4-2).

Figure 4-2. Producers spread messages over many partitions, on many machines,
where each partition is a little queue; load-balanced consumers (denoted a con‐
sumer group) share the partitions between them; rate limits are applied to produc‐
ers, consumers, and groups

The main advantage of this, from an architectural perspective, is that it takes the
issue of scalability off the table. With Kafka, hitting a scalability wall is virtually
impossible in the context of business systems. This can be quite empowering,
especially when ecosystems grow, allowing implementers to pick patterns that
are a little more footloose with bandwidth and data movement.

Scalability opens other opportunities too. Single clusters can grow to company
scales, without the risk of workloads overpowering the infrastructure. For exam‐
ple, New Relic relies on a single cluster of around 100 nodes, spanning three
datacenters, and processing 30 GB/s. In other, less data-intensive domains, 5- to
10-node clusters commonly support whole-company workloads. But it should be
noted that not all companies take the “one big cluster” route. Netflix, for exam‐
ple, advises using several smaller clusters to reduce the operational overheads of
running very large installations, but their largest installation is still around the
200-node mark.

To manage shared clusters, it’s useful to carve bandwidth up, using the band‐
width segregation features that ship with Kafka. We’ll discuss these next.

20 | Chapter 4: Beyond Messaging: An Overview of the Kafka Broker

http://bit.ly/2uip7qh
http://bit.ly/2GffkTr


Segregating Load in Multiservice Ecosystems
Service architectures are by definition multitenant. A single cluster will be used
by many different services. In fact, it’s not uncommon for all services in a com‐
pany to share a single production cluster. But doing so opens up the potential for
inadvertent denial-of-service attacks, causing service degradation or instability.

To help with this, Kafka includes a throughput control feature, called quotas, that
allows a defined amount of bandwidth to be allocated to specific services, ensur‐
ing that they operate within strictly enforced service-level agreements, or SLAs
(see Figure 4-2). Greedy services are aggressively throttled, so a single cluster can
be shared by any number of services without the fear of unexpected network
contention. This feature can be applied to either individual service instances or
load-balanced groups.

Maintaining Strong Ordering Guarantees
While it often isn’t the case for analytics use cases, most business systems need
strong ordering guarantees. Say a customer makes several updates to their cus‐
tomer information. The order in which these updates are processed is going to
matter, or else the latest change might be overwritten with one of the older, out-
of-date values.

There are a couple of things that need to be considered to ensure strong ordering
guarantees. The first is that messages that require relative ordering need to be
sent to the same partition. (Kafka provides ordering guarantees only within a
partition.) This is managed for you: you supply the same key for all messages that
require a relative order. So a stream of customer information updates would use

the CustomerId as their partitioning key. All messages for the same customer
would then be routed to the same partition, and hence be strongly ordered (see
Figure 4-3).

Segregating Load in Multiservice Ecosystems | 21

http://bit.ly/confluent_quotas


Figure 4-3. Ordering in Kafka is specified by producers using an ordering key

Sometimes key-based ordering isn’t enough, and global ordering is required.
This often comes up when you’re migrating from legacy messaging systems
where global ordering was an assumption of the original system’s design. To
maintain global ordering, use a single partition topic. Throughput will be limited
to that of a single machine, but this is typically sufficient for use cases of this
type.

The second thing to be aware of is retries. In almost all cases we want to enable
retries in the producer so that if there is some network glitch, long-running
garbage collection, failure, or the like, any messages that aren’t successfully sent
to the cluster will be retried. The subtlety is that messages are sent in batches, so
we should be careful to send these batches one at a time, per destination
machine, so there is no potential for a reordering of events when failures occur
and batches are retried. This is simply something we configure.

Ensuring Messages Are Durable
Kafka provides durability through replication. This means messages are written
to a configurable number of machines so that if one or more of those machines
fail, the messages will not be lost. If you configure a replication factor of three,
two machines can be lost without losing data.

To make best use of replication, for sensitive datasets like those seen in service-
based applications, configure three replicas for each partition and configure the
producer to wait for replication to complete before proceeding. Finally, as dis‐
cussed earlier, configure retries in the producer.

Highly sensitive use cases may require that data be flushed to disk synchro‐
nously, but this approach should be used sparingly. It will have a significant

22 | Chapter 4: Beyond Messaging: An Overview of the Kafka Broker

http://bit.ly/confluent_configure


impact on throughput, particularly in highly concurrent environments. If you do
take this approach, increase the producer batch size to increase the effectiveness
of each disk flush on the machine (batches of messages are flushed together).
This approach is useful for single machine deployments, too, where a single Zoo‐
Keeper node is run on the same machine and messages are flushed to disk syn‐
chronously for resilience.

Load-Balance Services and Make Them Highly
Available
Event-driven services should always be run in a highly available (HA) configura‐
tion, unless there is genuinely no requirement for HA. The main reason for this
is it’s essentially a no-op. If we have one instance of a service, then start a second,
load will naturally balance across the two. The same process provides high availa‐
bility should one node crash (see Figure 4-4).

Say we have two instances of the orders service, reading messages from the
Orders topic. Kafka would assign half of the partitions to each instance, so the
load is spread over the two.

Figure 4-4. If an instance of a service dies, data is redirected and ordering guaran‐
tees are maintained

Should one of the services fail, Kafka will detect this failure and reroute messages
from the failed service to the one that remains. If the failed service comes back
online, load flips back again.

This process actually works by assigning whole partitions to different consumers.
A strength of this approach is that a single partition can only ever be assigned to

Load-Balance Services and Make Them Highly Available | 23



a single service instance (consumer). This is an invariant, implying that ordering
is guaranteed, even as services fail and restart.

So services inherit both high availability and load balancing, meaning they can
scale out, handle unplanned outages, or perform rolling restarts without service
downtime. In fact, Kafka releases are always backward-compatible with the pre‐
vious version, so you are guaranteed to be able to release a new version without
taking your system offline.

Compacted Topics
By default, topics in Kafka are retention-based: messages are retained for some
configurable amount of time. Kafka also ships with a special type of topic that
manages keyed datasets—that is, data that has a primary key (identifier) as you
might have in a database table. These compacted topics retain only the most
recent events, with any old events, for a certain key, being removed. They also
support deletes (see “Deleting Data” on page 127 in Chapter 13).

Compacted topics work a bit like simple log-structure merge-trees (LSM trees).
The topic is scanned periodically, and old messages are removed if they have
been superseded (based on their key); see Figure 4-5. It’s worth noting that this is
an asynchronous process, so a compacted topic may contain some superseded
messages, which are waiting to be compacted away.

Figure 4-5. In a compacted topic, superseded messages that share the same key are
removed. So, in this example, for key K2, messages V2 and V1 would eventually be
compacted as they are superseded by V3.

Compacted topics let us make a couple of optimizations. First, they help us slow
down a dataset’s growth (by removing superseded events), but we do so in a
data-specific way rather than, say, simply removing messages older than two
weeks. Second, having smaller datasets makes it easier for us to move them from
machine to machine.

This is important for stateful stream processing. Say a service uses the Kafka’s
Streams API to load the latest version of the product catalogue into a table (as
discussed in “Windows, Joins, Tables, and State Stores” on page 135 in Chapter 14,

24 | Chapter 4: Beyond Messaging: An Overview of the Kafka Broker

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/


a table is a disk resident hash table held inside the API). If the product catalogue
is stored in a compacted topic in Kafka, the load can be performed quicker and
more efficiently if it doesn’t have to load the whole versioned history as well (as
would be the case with a regular topic).

Long-Term Data Storage
One of the bigger differences between Kafka and other messaging systems is that
it can be used as a storage layer. In fact, it’s not uncommon to see retention-
based or compacted topics holding more than 100 TB of data. But Kafka isn’t a
database; it’s a commit log offering no broad query functionality (and there are
no plans for this to change). But its simple contract turns out to be quite useful
for storing shared datasets in large systems or company architectures—for exam‐
ple, the use of events as a shared source of truth, as we discuss in Chapter 9.

Data can be stored in regular topics, which are great for audit or Event Sourcing,
or compacted topics, which reduce the overall footprint. You can combine the
two, getting the best of both worlds at the price of additional storage, by holding
both and linking them together with a Kafka Streams job. This pattern is called
the latest-versioned pattern.

Security
Kafka provides a number of enterprise-grade security features for both authenti‐
cation and authorization. Client authentication is provided through either Ker‐
beros or Transport Layer Security (TLS) client certificates, ensuring that the
Kafka cluster knows who is making each request. There is also a Unix-like per‐
missions system, which can be used to control which users can access which data.
Network communication can be encrypted, allowing messages to be securely sent
across untrusted networks. Finally, administrators can require authentication for
communication between Kafka and ZooKeeper.

The quotas mechanism, discussed in the section “Segregating Load in Multiser‐
vice Ecosystems” on page 21, can be linked to this notion of identity, and Kafka’s
security features are extended across the different components of the Confluent
platform (the Rest Proxy, Confluent Schema Registry, Replicator, etc.).

Summary
Kafka is a little different from your average messaging technology. Being
designed as a distributed, scalable infrastructure component makes it an ideal
backbone through which services can exchange and buffer events. There are
obviously a number of elements unique to the technology itself, but the ones that

Long-Term Data Storage | 25

http://bit.ly/confluent_kafka_storage
http://bit.ly/2pGjv3y
http://bit.ly/2pGjv3y


stand out are its abilities to scale, to run always on, and to retain datasets long-
term.

We can use the patterns and features discussed in this chapter to build a wide
variety of architectures, from fine-grained service-based systems right up to
hulking corporate conglomerates. This is an approach that is safe, pragmatic, and
tried and tested.

26 | Chapter 4: Beyond Messaging: An Overview of the Kafka Broker



PART II

Designing Event-Driven Systems

Life is a series of natural and spontaneous changes. Don’t resist them—that only
creates sorrow. Let reality be reality. Let things flow naturally forward.

—Lao-Tzu, 6th–5th century BCE





CHAPTER 5

Events: A Basis for Collaboration

Service-based architectures, like microservices or SOA, are commonly built with
synchronous request-response protocols. This approach is very natural. It is,
after all, the way we write programs: we make calls to other code modules, await
a response, and continue. It also fits closely with a lot of use cases we see each
day: front-facing websites where users hit buttons and expect things to happen,
then return.

But when we step into a world of many independent services, things start to
change. As the number of services grows gradually, the web of synchronous
interactions grows with them. Previously benign availability issues start to trigger
far more widespread outages. Our ops engineers often end up as reluctant detec‐
tives, playing out distributed murder mysteries as they frantically run from ser‐
vice to service, piecing together snippets of secondhand information. (Who said
what, to whom, and when?)

This is a well-known problem, and there are a number of solutions. One is to
ensure each individual service has a significantly higher SLA than your system as
a whole. Google provides a protocol for doing this. An alternative is to simply
break down the synchronous ties that bind services together using (a) asynchro‐
nicity and (b) a message broker as an intermediary.

Say you are working in online retail. You would probably find that synchronous

interfaces like getImage() or processOrder()—calls that expect an immediate
response—feel natural and familiar. But when a user clicks Buy, they actually
trigger a large, complex, and asynchronous process into action. This process
takes a purchase and physically ships it to the user’s door, way beyond the con‐
text of the original button click. So splitting software into asynchronous flows
allows us to compartmentalize the different problems we need to solve and
embrace a world that is itself inherently asynchronous.

29

http://bit.ly/2IUx8oK


1 The term command originally came from Bertrand Meyer’s CQS (Command Query Separation) princi‐

ple. A slightly different definition from Bertrand’s is used here, leaving it optional as to whether a com‐

mand should return a result or not. There is a reason for this: a command is a request for something

specific to happen in the future. Sometimes it is desirable to have no return value; other times, a return

value is important. Martin Fowler uses the example of popping a stack, while here we use the example of

processing a payment, which simply returns whether the command succeeded. By leaving the command

with an optional return type, the implementer can decide if it should return a result or not, and if not

CQS/CQRS may be used. This saves the need for having another name for a command that does return

a result. Finally, a command is never an event. A command has an explicit expectation that something

(a state change or side effect) will happen in the future. Events come with no such future expectation.

They are simply a statement that something happened.

In practice we tend to embrace this automatically. We’ve all found ourselves poll‐
ing database tables for changes, or implementing some kind of scheduled cron
job to churn through updates. These are simple ways to break the ties of synchro‐
nicity, but they always feel like a bit of a hack. There is a good reason for this:
they probably are.

So we can condense all these issues into a single observation. The imperative pro‐
gramming model, where we command services to do our bidding, isn’t a great fit
for estates where services are operated independently.

In this chapter we’re going to focus on the other side of the architecture coin:
composing services not through chains of commands and queries, but rather
through streams of events. This is an implementation pattern in its own right,
and has been used in industry for many years, but it also forms a baseline for the
more advanced patterns we’ll be discussing in Part III and Part V, where we
blend the ideas of event-driven processing with those seen in streaming plat‐
forms.

Commands, Events, and Queries
Before we go any further, consider that there are three distinct ways that pro‐
grams can interact over a network: commands, events, and queries. If you’ve not
considered the distinction between these three before, it’s well worth doing so, as
it provides an important reference for interprocess communication.

The three mechanisms through which services interact can be described as fol‐
lows (see Table 5-1 and Figure 5-1):

Commands
Commands are actions—requests for some operation to be performed by
another service, something that will change the state of the system. Com‐
mands execute synchronously and typically indicate completion, although
they may also include a result.1

• Example: processPayment(), returning whether the payment succeeded.

30 | Chapter 5: Events: A Basis for Collaboration

https://martinfowler.com/bliki/CommandQuerySeparation.html
https://www.confluent.io/blog/stream-data-platform-1/
https://www.confluent.io/blog/stream-data-platform-1/


• When to use: On operations that must complete synchronously, or when
using orchestration or a process manager. Consider restricting the use of
commands to inside a bounded context.

Events
Events are both a fact and a notification. They represent something that hap‐
pened in the real world but include no expectation of any future action. They
travel in only one direction and expect no response (sometimes called “fire
and forget”), but one may be “synthesized” from a subsequent event.

• Example: OrderCreated{Widget}, CustomerDetailsUpdated{Customer}

• When to use: When loose coupling is important (e.g., in multiteam sys‐
tems), where the event stream is useful to more than one service, or
where data must be replicated from one application to another. Events
also lend themselves to concurrent execution.

Queries
Queries are a request to look something up. Unlike events or commands,
queries are free of side effects; they leave the state of the system unchanged.

• Example: getOrder(ID=42) returns Order(42,…).

• When to use: For lightweight data retrieval across service boundaries, or
heavyweight data retrieval within service boundaries.

Table 5-1. Differences between commands, events, and queries

Behavior/state change Includes a response

Command Requested to happen Maybe

Event Just happened Never

Query None Always

The beauty of events is they wear two hats: a notification hat that triggers services
into action, but also a replication hat that copies data from one service to
another. But from a services perspective, events lead to less coupling than com‐
mands and queries. Loose coupling is a desirable property where interactions
cross deployment boundaries, as services with fewer dependencies are easier to
change.

Commands, Events, and Queries | 31

http://bit.ly/2vezicp
https://en.wikipedia.org/wiki/Separation_of_concerns


2 See https://en.wikipedia.org/wiki/Connascence and http://wiki.cfcl.com/pub/Projects/Connascence/Resour

ces/p147-page-jones.pdf.

Figure 5-1. A visual summary of commands, events, and queries

Coupling and Message Brokers
The term loose coupling is used widely. It was originally a design heuristic for
structuring programs, but when applied to network-attached services, particu‐
larly those run by different teams, it must be interpreted slightly differently. Here
is a relatively recent definition from Frank Leymann:

Loose coupling reduces the number of assumptions two parties make about one
another when they exchange information.

These assumptions broadly relate to a combination of data, function, and opera‐
bility. As it turns out, however, this isn’t what most people mean when they use
the term loose coupling. When people refer to a loosely coupled application, they
usually mean something closer to connascence, defined as follows:2

A measure of the impact a change to one component will have on others.

This captures the intuitive notion of coupling: that if two entities are coupled,
then an action applied to one will result in some action applied to the other. But
an important part of this definition of connascence is the word change, which
implies a temporal element. Coupling isn’t a static thing; it matters only in the
very instant that we try to change our software. In fact, if we left our software
alone, and never changed it, coupling wouldn’t matter at all.

Is Loose Coupling Always Good?
There is a widely held sentiment in industry that tight coupling is bad and loose
coupling is good. This is not wholly accurate. Both tight and loose coupling are

32 | Chapter 5: Events: A Basis for Collaboration

https://en.wikipedia.org/wiki/Connascence
http://wiki.cfcl.com/pub/Projects/Connascence/Resources/p147-page-jones.pdf
http://wiki.cfcl.com/pub/Projects/Connascence/Resources/p147-page-jones.pdf
http://bit.ly/2IUpUku
http://bit.ly/2GbF5UE


3 “Shared nothing” is also used in the database world but to mean a slightly different thing.

4 As an anecdote, I once worked with a team that would encrypt sections of the information they pub‐

lished, not so it was secure, but so they could control who could couple to it (by explicitly giving the

other party the encryption key). I wouldn’t recommend this practice, but it makes the point that people

really care about this problem.

actually pretty useful in different situations. We might summarize the relation‐
ship as:

Loose coupling lets components change independently of one another. Tight cou‐
pling lets components extract more value from one another.

The path to loose coupling is not to share. If you don’t share anything, then other
applications can’t couple to you. Microservices, for example, are sometimes
referred to as “shared nothing,”3 encouraging different teams not to share data
and not to share functionality (across service boundaries), as it impedes their
ability to operate independently.4

Of course, the problem with not sharing is it’s not very collaborative; you inevita‐
bly end up reinventing the wheel or forcing others to. So while it may be conve‐
nient for you, it’s probably not so good for the department or company you work
in. Somewhat unsurprisingly, sensible approaches strike a balance. Most business
applications have to share data with one another, so there is always some level of
coupling. Shared functionality, be it services like DNS or payment processing,
can be valuable, as can shared code libraries. So tighter coupling can of course be
a good thing, but we have to be aware that it is a tradeoff. Sharing always increa‐
ses the coupling on whatever we decide to share.

Sharing always increases the coupling on whatever we decide to share.

As an example, in most traditional applications, you couple tightly to your data‐
base and your application will extract as much value as possible from the data‐
base’s ability to perform data-intensive operations. There is little downside, as
the application and database will change together, and you don’t typically let
other systems use your database. A different example is DNS, used widely across
an organization. In this case its wide usage makes it deeply valuable, but also
tightly coupled. But as it changes infrequently and has a thin interface, there is
little practical downside.

So we can observe that the coupling of a single component is really a function of
three factors, with an addendum:

Coupling and Message Brokers | 33

http://bit.ly/building-evolutionary-architectures
http://bit.ly/building-evolutionary-architectures


• Interface surface area (functionality offered, breadth and quantity of data
exposed)

• Number of users

• Operational stability and performance

The addendum: Frequency of change—that is, if a component doesn’t change (be
it data, function, or operation), then coupling (i.e., connascence) doesn’t matter.

Messaging helps us build loosely coupled services because it moves pure data
from a highly coupled place (the source) and puts it into a loosely coupled place
(the subscriber). So any operations that need to be performed on that data are
not done at source, but rather in each subscriber, and messaging technologies
like Kafka take most of the operational stability/performance issues off the table.

On the other hand, request-driven approaches are more tightly coupled as func‐
tionality, data, and operational factors are concentrated in a single place. Later in
this chapter we discuss the idea of a bounded context, which is a way of balancing
these two: request-driven protocols used inside the bounded context, and mes‐
saging between them. We also discuss the wider consequences of coupling in
some detail in Chapter 8.

Essential Data Coupling Is Unavoidable
All significantly sized businesses have core datasets that many programs need. If
you are sending a user an email, you need their address; if you’re building a sales
report, you need sales figures; and so on. Data is something applications cannot
do without, and there is no way to code around not having the data (while you
might, for example, code around not having access to some piece of functional‐
ity). So pretty much all business systems, in larger organizations, need a base
level of essential data coupling.

Functional couplings are optional. Core data couplings are essential.

Using Events for Notification
Most message brokers provide a publish-subscribe facility where the logic for
how messages are routed is defined by the receivers rather than the senders; this
process is known as receiver-driven routing. So the receiver retains control of
their presence in the interaction, which makes the system pluggable (see
Figure 5-2).

34 | Chapter 5: Events: A Basis for Collaboration



Figure 5-2. Comparison between the request-response and event-driven approaches
demonstrating how event-driven approaches provide less coupling

Let’s look at a simple example based on a customer ordering an iPad. The user
clicks Buy, and an order is sent to the orders service. Three things then happen:

1. The shipping service is notified.

2. It looks up the address to send the iPad to.

3. It starts the shipping process.

In a REST- or RPC-based approach this might look like Figure 5-3.

Figure 5-3. A request-driven order management system

The same flow can be built with an event-driven approach (Figure 5-4), where
the orders service simply journals the event, “Order Created,” which the shipping
service then reacts to.

Using Events for Notification | 35



Figure 5-4. An event-driven version of the system described in Figure 5-3; in this
configuration the events are used only as a means of notification: the orders service
notifies the shipping service via Kafka

If we look closely at Figure 5-4, the interaction between the orders service and
the shipping service hasn’t changed all that much, other than that they commu‐
nicate via events rather than calling each other directly. But there is an important
change: the orders service has no knowledge that the shipping service exists. It
just raises an event denoting that it did its job and an order was created. The
shipping service now has control over whether it partakes in the interaction. This
is an example of receiver-driven routing: logic for routing is located at the
receiver of the events, rather than at the sender. The burden of responsibility is
flipped! This reduces coupling and adds a useful level of pluggability to the sys‐
tem.

Pluggability becomes increasingly important as systems get more complex. Say
we decide to extend our system by adding a repricing service, which updates the
price of goods in real time, tweaking a product’s price based on supply and
demand (Figure 5-5). In a REST- or RPC-based approach we would need to

introduce a maybeUpdatePrice() method, which is called by both the orders ser‐
vice and the payment service. But in the event-driven model, repricing is just a
service that plugs into the event streams for orders and payments, sending out
price updates when relevant criteria are met.

36 | Chapter 5: Events: A Basis for Collaboration



Figure 5-5. Extending the system described in Figure 5-4 by adding a repricing ser‐
vice to demonstrate the pluggability of the architecture

Using Events to Provide State Transfer
In Figure 5-5, we used events as a means of notification, but left the query for the
customer’s address as a REST/RPC call.

We can also use events as a type of state transfer so that, rather than sending the
query to the customer service, we would use the event stream to replicate cus‐
tomer data from the customer service to the shipping service, where it can be
queried locally (see Figure 5-6).

Figure 5-6. Extending the system described in Figure 5-4 to be fully event-driven;
here events are used for notification (the orders service notifies the shipping service)
as well as for data replication (data is replicated from the customer service to the
shipping service, where it can be queried locally).

This makes use of the other property events have—their replication hat. (For‐
mally this is termed event-carried state transfer, which is essentially a form of

Using Events to Provide State Transfer | 37

http://bit.ly/2pLKRFF


data integration.) So the notification hat makes the architecture more pluggable,
and the replication hat moves data from one service to another so queries can be
executed locally. Replicating a dataset locally is advantageous in much the same
way that caching is often advantageous, as it makes data access patterns faster.

Which Approach to Use
We can summarize the advantages of the pure “query by event-carried state
transfer” approach as follows:

Better isolation and autonomy
Isolation is required for autonomy. Keeping the data needed to drive queries
isolated and local means it stays under the service’s control.

Faster data access
Local data is typically faster to access. This is particularly true when data
from different services needs to be combined, or where the query spans
geographies.

Where the data needs to be available offline
In the case of a mobile device, ship, plane, train, or the like, replicating the
dataset provides a mechanism for moving and resynchronizing when con‐
nected.

On the other hand, there are advantages to the REST/RPC approach:

Simplicity
It’s simpler to implement, as there are fewer moving parts and no state to
manage.

Singleton
State lives in only one place (inevitable caching aside!), meaning a value can
be changed there and all users see it immediately. This is important for use
cases that require synchronicity—for example, reading a previously updated
account balance (we look at how to synthesize this property with events in
“Collapsing CQRS with a Blocking Read” on page 142 in Chapter 15).

Centralized control
Command-and-control workflows can be used to centralize business pro‐
cesses in a single controlling service. This makes it easier to reason about.

Of course, as we saw earlier, we can blend the two approaches together and,
depending on which hat we emphasize, we get a solution that suits a differently
sized architecture. If we’re designing for a small, lightweight use case—like build‐
ing an online application—we would put weight on the notification hat, as the
weight of data replication might be considered an unnecessary burden. But in a
larger and more complex architecture, we might place more emphasis on the

38 | Chapter 5: Events: A Basis for Collaboration

https://en.wikipedia.org/wiki/Data_integration


replication hat so that each service has greater autonomy over the data it queries.
(This is discussed in more detail in Chapter 8.) Microservice applications tend to
be larger and leverage both hats. Jonas Bonér puts this quite firmly:

Communication between microservices needs to be based on asynchronous mes‐
sage passing (while logic inside each microservice is performed in a synchronous
fashion).

Implementers should be careful to note that he directs this at a strict definition of
microservices, one where services are independently deployable. Slacker inter‐
pretations, which are seen broadly in industry, may not qualify so strong an
assertion.

The Event Collaboration Pattern
To build fine-grained services using events, a pattern called Event Collaboration
is often used. This allows a set of services to collaborate around a single business
workflow, with each service doing its bit by listening to events, then creating new
ones. So, for example, we might start by creating an order, and then different
services would evolve the workflow until the purchased item makes it to the
user’s door.

This might not sound too different from any other workflow, but what is special
about Event Collaboration is that no single service owns the whole process;
instead, each service owns a small part—some subset of state transitions—and
these plug together through a chain of events. So each service does its work, then
raises an event denoting what it did. If it processed a payment, it would raise a
Payment Processed event. If it validated an order, it would raise Order Validated,
and so on. These events trigger the next step in the chain (which could trigger
that service again, or alternatively trigger another service).

In Figure 5-7 each circle represents an event. The color of the circle designates
the topic it is in. A workflow evolves from Order Requested through to Order
Completed. The three services (order, payment, shipping) handle the state transi‐
tions that pertain to their section of the workflow. Importantly, no service knows
of the existence of any other service, and no service owns the entire workflow.
For example, the payment service knows only that it must react to validated
orders and create Payment Processed events, with the latter taking the workflow
one step forward. So the currency of event collaboration is, unsurprisingly,
events!

The Event Collaboration Pattern | 39

http://bit.ly/2pIaWoH
https://martinfowler.com/eaaDev/EventCollaboration.html


5 See http://www.enterpriseintegrationpatterns.com/patterns/messaging/ProcessManager.html and https://

www.thoughtworks.com/insights/blog/scaling-microservices-event-stream.

Figure 5-7. An example workflow implemented with Event Collaboration

The lack of any one point of central control means systems like these are often
termed choreographies: each service handles some subset of state transitions,
which, when put together, describe the whole business process. This can be con‐
trasted with orchestration, where a single process commands and controls the
whole workflow from one place—for example, via a process manager.5 A process
manager is implemented with request-response.

Choreographed systems have the advantage that they are pluggable. If the pay‐
ment service decides to create three new event types for the payment part of the
workflow, so long as the Payment Processed event remains, it can do so without
affecting any other service. This is useful because it means if you’re implement‐
ing a service, you can change the way you work and no other services need to
know or care about it. By contrast, in an orchestrated system, where a single ser‐
vice dictates the workflow, all changes need to be made in the controller. Which
of these approaches is best for you is quite dependent on use case, but the advan‐
tage of orchestration is that the whole workflow is written down, in code, in one
place. That makes it easy to reason about the system. The downside is that the
model is tightly coupled to the controller, so broadly speaking choreographed
approaches better suit larger implementations (particularly those that span teams
and hence change independently of one another).

40 | Chapter 5: Events: A Basis for Collaboration

http://www.enterpriseintegrationpatterns.com/patterns/messaging/ProcessManager.html
https://www.thoughtworks.com/insights/blog/scaling-microservices-event-stream
https://www.thoughtworks.com/insights/blog/scaling-microservices-event-stream


The events service’s share form a journal, or “shared narrative,”
describing exactly how your business evolved over time.

Relationship with Stream Processing
The notification and replication duality that events demonstrate maps cleanly to
the concepts of stateless and stateful stream processing, respectively. The best
way to understand this is to consider the shipping service example we discussed
earlier in the chapter. If we changed the shipping service to use the Kafka
Streams API, we could approach the problem in two ways (Figure 5-8):

Stateful approach
Replicate the Customers table into the Kafka Streams API (denoted “KTa‐
ble” in Figure 5-8). This makes use of the event-carried state transfer
approach.

Stateless approach
We process events and look up the appropriate customer with every order
that is processed.

Figure 5-8. Stateful stream processing is similar to using events for both notifica‐
tion and state transfer (left), while stateless stream processing is similar to using
events for notification (right)

So the use of event-carried state transfer, in stateful stream processing, differs in
two important ways, when compared to the example we used earlier in this chap‐
ter:

• The dataset needs to be held, in its entirety, in Kafka. So if we are joining to a
table of customers, all customer records must be stored in Kafka as events.

Relationship with Stream Processing | 41



• The stream processor includes in-process, disk-resident storage to hold the
table. There is no external database, and this makes the service stateful.
Kafka Streams then applies a number of techniques to make managing this
statefulness practical.

This topic is discussed in detail in Chapter 6.

Mixing Request- and Event-Driven Protocols
A common approach, particularly seen in smaller web-based systems, is to mix
protocols, as shown in Figure 5-9. Online services interact directly with a user,
say with REST, but also journal state changes to Kafka (see “Event Sourcing,
Command Sourcing, and CQRS in a Nutshell” on page 55 in Chapter 7). Offline
services (for billing, fulfillment, etc.) are built purely with events.

Figure 5-9. A very simple event-driven services example, data is imported from a
legacy application via the Connect API; user-facing services provide REST APIs to
the UI; state changes are journaled to Kafka as events. at the bottom, business pro‐
cessing is performed via Event Collaboration

In larger implementations, services tend to cluster together, for example within a
department or team. They mix protocols inside one cluster, but rely on events to
communicate between clusters (see Figure 5-10).

42 | Chapter 5: Events: A Basis for Collaboration



Figure 5-10. Clusters of services form bounded contexts within which functionality
is shared. Contexts interact with one another only through events, spanning
departments, geographies or clouds

In Figure 5-10 three departments communicate with one another only through
events. Inside each department (the three larger circles), service interfaces are
shared more freely and there are finer-grained event-driven flows that drive col‐
laboration. Each department contains a number of internal bounded contexts—
small groups of services that share a domain model, are usually deployed
together, and collaborate closely. In practice, there is often a hierarchy of sharing.
At the top of this hierarchy, departments are loosely coupled: the only thing they
share is events. Inside a department, there will be many applications and those
applications will interact with one another with both request-response and
event-based mechanisms, as in Figure 5-9. Each application may itself be com‐
posed from several services, but these will typically be more tightly coupled to
one another, sharing a domain model and having synchronized release sched‐
ules.

This approach, which confines reuse within a bounded context, is an idea that
comes from domain-driven design, or DDD. One of the big ideas in DDD was
that broad reuse could be counterproductive, and that a better approach was to
create boundaries around areas of a business domain and model them separately.
So within a bounded context the domain model is shared, and everything is
available to everything else, but different bounded contexts don’t share the same
model, and typically interact through more restricted interfaces.

Mixing Request- and Event-Driven Protocols | 43

https://en.wikipedia.org/wiki/Domain-driven_design


6 Neil Ford, Rebecca Parsons, and Pat Kua, Building Evolutionary Architectures (Sebastopol, CA: O’Reilly,

2017).

This idea was extended by microservice implementers, so a bounded context
describes a set of closely related components or services that share code and are
deployed together. Across bounded contexts there is less sharing (be it code,
functionality, or data). In fact, as we noted earlier in this chapter, microservices
are often termed “shared nothing” for this reason.6

Summary
Businesses are a collection of people, teams, and departments performing a wide
range of functions, backed by technology. Teams need to work asynchronously
with respect to one another to be efficient, and many business processes are
inherently asynchronous—for example, shipping a parcel from a warehouse to a
user’s door. So we might start a project as a website, where the frontend makes
synchronous calls to backend services, but as it grows the web of synchronous
calls tightly couple services together at runtime. Event-based methods reverse
this, decoupling systems in time and allowing them to evolve independently of
one another.

In this chapter we noticed that events, in fact, have two separate roles: one for
notification (a call for action), and the other a mechanism for state transfer
(pushing data wherever it is needed). Events make the system pluggable, and for
reasonably sized architectures it is sensible to blend request- and event-based
protocols, but you must take care when using these two sides of the event duality:
they lead to very different types of architecture. Finally, we looked at how to scale
the two approaches by separating out different bounded contexts that collaborate
only through events.

But with all this talk of events, we’ve talked little of replayable logs or stream pro‐
cessing. When we apply these patterns with Kafka, the toolset itself creates new
opportunities. Retention in the broker becomes a tool we can design for, allowing
us to embrace data on the outside with a central store of events that services can
refer back to. So the ops engineers, whom we discussed in the opening section of
this chapter, will still be playing detective, but hopefully not quite as often—and
at least now the story comes with a script!

44 | Chapter 5: Events: A Basis for Collaboration

http://bit.ly/2DWuVFm


CHAPTER 6

Processing Events with Stateful
Functions

Imperative styles of programming are some of the oldest of all, and their popu‐
larity persists for good reason. Procedures execute sequentially, spelling out a
story on the page and altering the program’s state as they do so.

As mainstream applications became distributed in the 1980s and 1990s, the same
mindset was applied to this distributed domain. Approaches like Corba and EJB
(Enterprise JavaBeans) raised the level of abstraction, making distributed pro‐
gramming more accessible. History has not always judged these so well. EJB,
while touted as a panacea of its time, fell quickly by the wayside as systems
creaked with the pains of tight coupling and the misguided notion that the net‐
work was something that should be abstracted away from the programmer.

In fairness, things have improved since then, with popular technologies like
gRPC and Finagle adding elements of asynchronicity to the request-driven style.
But the application of this mindset to the design of distributed systems isn’t nec‐
essarily the most productive or resilient route to take. Two styles of program‐
ming that better suit distributed design, particularly in a services context, are the
dataflow and functional styles.

You will have come across dataflow programming if you’ve used utilities like Sed
or languages like Awk. These are used primarily for text processing; for example,
a stream of lines might be pushed through a regex, one line at a time, with the
output piped to the next command, chaining through stdin and stdout. This style
of program is more like an assembly line, with each worker doing a specific task,
as the products make their way along a conveyor belt. Since each worker is con‐
cerned only with the availability of data inputs, there have no “hidden state” to
track. This is very similar to the way streaming systems work. Events accumulate
in a stream processor waiting for a condition to be met, say, a join operation

45

https://grpc.io/
https://twitter.github.io/finagle/
https://en.wikipedia.org/wiki/Data-driven_programming
https://en.wikipedia.org/wiki/Data-driven_programming


between two different streams. When the correct events are present, the join
operation completes and the pipeline continues to the next command. So Kafka
provides the equivalent of a pipe in Unix shell, and stream processors provide the
chained functions.

There is a similarly useful analogy with functional programming. As with the
dataflow style, state is not mutated in place, but rather evolves from function to
function, and this matches closely with the way stream processors operate. So
most of the benefits of both functional and dataflow languages also apply to
streaming systems. These can be broadly summarized as:

• Streaming has an inherent ability for parallelization.

• Streaming naturally lends itself to creating cached datasets and keeping them
up to date. This makes it well suited to systems where data and code are sep‐
arated by the network, notably data processing and GUIs.

• Streaming systems are more resilient than traditional approaches, as high
availability is built into the runtime and programs execute in a lossless man‐
ner (see the discussion of Event Sourcing in Chapter 7).

• Streaming functions are typically easier to reason about than regular pro‐
grams. Pure functions are free from side effects. Stateful functions are not,
but do avoid shared mutable state.

• Streaming systems embrace a polyglot culture, be it via different program‐
ming languages or different datastores.

• Programs are written at a higher level of abstraction, making them more
comprehensible.

But streaming approaches also inherit some of the downsides. Purely functional
languages must negotiate an impedance mismatch when interacting with more
procedural or stateful elements like filesystems or the network. In a similar vein,
streaming systems must often translate to the request-response style of REST or
RPCs and back again. This has led some implementers to build systems around a
functional core, which processes events asynchronously, wrapped in an impera‐
tive shell, used to marshal to and from outward-facing request-response inter‐
faces. The “functional core, imperative shell” pattern keeps the key elements of
the system both flexible and scalable, encouraging services to avoid side effects
and express their business logic as simple functions chained together through the
log.

In the next section we’ll look more closely at why statefulness, in the context of
stream processing, matters.

46 | Chapter 6: Processing Events with Stateful Functions

http://bit.ly/2pEXbrS
http://bit.ly/2pEXbrS
http://bit.ly/2pFFnN5
https://en.wikipedia.org/wiki/Purely_functional_programming
https://en.wikipedia.org/wiki/Purely_functional_programming
http://bit.ly/2pExaYS


Making Services Stateful
There is a well-held mantra that statelessness is good, and for good reason. State‐
less services start instantly (no data load required) and can be scaled out linearly,
cookie-cutter-style.

Web servers are a good example: to increase their capacity for generating
dynamic content, we can scale a web tier horizontally, simply by adding new
servers. So why would we want anything else? The rub is that most applications
aren’t really stateless. A web server needs to know what pages to render, what
sessions are active, and more. It solves these problems by keeping the state in a
database. So the database is stateful and the web server is stateless. The state
problem has just been pushed down a layer. But as traffic to the website increa‐
ses, it usually leads programmers to cache state locally, and local caching leads to
cache invalidation strategies, and a spiral of coherence issues typically ensues.

Streaming platforms approach this problem of where state should live in a
slightly different way. First, recall that events are also facts, converging toward
the stream processor like conveyor belts on an assembly line. So, for many use
cases, the events that trigger a process into action contain all the data the pro‐
gram needs, much like the dataflow programs just discussed. If you’re validating
the contents of an order, all you need is its event stream.

Sometimes this style of stateless processing happens naturally; other times imple‐
menters deliberately enrich events in advance, to ensure they have all the data
they need for the job at hand. But enrichments inevitably mean looking things
up, usually in a database.

Stateful stream processing engines, like Kafka’s Streams API, go a step further:
they ensure all the data a computation needs is loaded into the API ahead of
time, be it events or any tables needed to do lookups or enrichments. In many
cases this makes the API, and hence the application, stateful, and if it were restar‐
ted for some reason it would need to reacquire that state before it could proceed.

This should seem a bit counterintuitive. Why would you want to make a service
stateful? Another way to look at this is as an advanced form of caching that better
suits data-intensive workloads. To make this clearer, let’s look at three examples
—one that uses database lookups, one that is event-driven but stateless, and one
that is event-driven but stateful.

The Event-Driven Approach
Say we have an email service that listens to an event stream of orders and then
sends confirmation emails to users once they complete a purchase. This requires
information about both the order as well as the associated payment. Such an
email service might be created in a number of different ways. Let’s start by

Making Services Stateful | 47

http://bit.ly/2DWYzKC
http://bit.ly/2DWYzKC
http://bit.ly/2DWYzKC


assuming it’s a simple event-driven service (i.e., no use of a streaming API, as in
Figure 6-1). It might react to order events, then look up the corresponding pay‐
ment. Or it might do the reverse: reacting to payments, then looking up the cor‐
responding order. Let’s assume the former.

Figure 6-1. A simple event-driven service that looks up the data it needs as it pro‐
cesses messages

So a single event stream is processed, and lookups that pull in any required data
are performed inline. The solution suffers from two problems:

• The constant need to look things up, one message at a time.

• The payment and order are created at about the same time, so one might
arrive before the other. This means that if the order arrives in the email ser‐
vice before the payment is available in the database, then we’d have to either
block and poll until it becomes available or, worse, skip the email processing
completely.

The Pure (Stateless) Streaming Approach
A streaming system comes at this problem from a slightly different angle. The
streams are buffered until both events arrive, and can be joined together
(Figure 6-2).

48 | Chapter 6: Processing Events with Stateful Functions



Figure 6-2. A stateless streaming service that joins two streams at runtime

This solves the two aforementioned issues with the event-driven approach. There
are no remote lookups, addressing the first point. It also no longer matters what
order events arrive in, addressing the second point.

The second point turns out to be particularly important. When you’re working
with asynchronous channels there is no easy way to ensure relative ordering
across several of them. So even if we know that the order is always created before
the payment, it may well be delayed, arriving the other way around.

Finally, note that this approach isn’t, strictly speaking, stateless. The buffer
actually makes the email service stateful, albeit just a little. When Kafka Streams
restarts, before it does any processing, it will reload the contents of each buffer.
This is important for achieving deterministic results. For example, the output of
a join operation is dependent on the contents of the opposing buffer when a mes‐
sage arrives.

The Stateful Streaming Approach
Alas, the data flowing through the various event streams isn’t always enough—
sometimes you need lookups or enrichments. For example, the email service
would need access to the customer’s email address. There will be no recent event
for this (unless you happened to be very lucky and the customer just updated
their details). So you’d have to look up the email address in the customer service
via, say, a REST call (Figure 6-3).

Making Services Stateful | 49



Figure 6-3. A stateless streaming service that looks up reference data in another
service at runtime

This is of course a perfectly valid approach (in fact, many production systems do
exactly this), but a stateful stream processing system can make a further optimi‐
zation. It uses the same process of local buffering used to handle potential delays
in the orders and payments topics, but instead of buffering for just a few minutes,
it preloads the whole customer event stream from Kafka into the email service,
where it can be used to look up historic values (Figure 6-4).

Figure 6-4. A stateful streaming service that replicates the Customers topic into a
local table, held inside the Kafka Streams API

So now the email service is both buffering recent events, as well as creating a
local lookup table. (The mechanics of this are discussed in more detail in Chap‐
ter 14.)

50 | Chapter 6: Processing Events with Stateful Functions



This final, fully stateful approach comes with disadvantages:

• The service is now stateful, meaning for an instance of the email service to
operate it needs the relevant customer data to be present. This means, in the
worst case, loading the full dataset on startup.

as well as advantages:

• The service is no longer dependent on the worst-case performance or liven‐
ess of the customer service.

• The service can process events faster, as each operation is executed without
making a network call.

• The service is free to perform more data-centric operations on the data it
holds.

This final point is particularly important for the increasingly data-centric sys‐
tems we build today. As an example, imagine we have a GUI that allows users to
browse order, payment, and customer information in a scrollable grid. The grid
lets the user scroll up and down through the items it displays.

In a traditional, stateless model, each row on the screen would require a call to all
three services. This would be sluggish in practice, so caching would likely be
added, along with some hand-crafted polling mechanism to keep the cache up to
date.

But in the streaming approach, data is constantly pushed into the UI
(Figure 6-5). So you might define a query for the data displayed in the grid,

something like select * from orders, payments, customers where…. The
API executes it over the incoming event streams, stores the result locally, and
keeps it up to date. So streaming behaves a bit like a decoratively defined cache.

Figure 6-5. Stateful stream processing is used to materialize data inside a web
server so that the UI can access it locally for better performance, in this case via a
scrollable grid

Making Services Stateful | 51



1 See http://bit.ly/2GaCRZO and http://bit.ly/2IUPHJa.

The Practicalities of Being Stateful
Being stateful comes with some challenges: when a new node starts, it must load
all stateful components (i.e., state stores) before it can start processing messages,
and in the worst case this reload can take some time. To help with this problem,
Kafka Streams provides three mechanisms for making being stateful a bit more
practical:

• It uses a technique called standby replicas, which ensure that for every table
or state store on one node, there is a replica kept up to date on another. So, if
any node fails, it will immediately fail over to its backup node without inter‐
rupting processing unduly.

• Disk checkpoints are created periodically so that, should a node fail and
restart, it can load its previous checkpoint, then top up the few messages it
missed when it was offline from the log.

• Finally, compacted topics are used to keep the dataset as small as possible.
This acts to reduce the load time for a complete rebuild should one be neces‐
sary.

Kafka Streams uses intermediary topics, which can be reset and rederived using
the Streams Reset tool.1

An event-driven application uses a single input stream to drive its work.
A streaming application blends one or more input streams into one or
more output streams. A stateful streaming application also recasts
streams to tables (used to do enrichments) and stores intermediary state
in the log, so it internalizes all the data it needs.

Summary
This chapter covers three different ways of doing event-based processing: the
simple event-driven approach, where you process a single event stream one mes‐
sage at a time; the streaming approach, which joins different event streams
together; and finally, the stateful streaming approach, which turns streams into
tables and stores data in the log.

So instead of pushing the state problem down a layer into a database, stateful
stream processors, like Kafka’s Streams API, are proudly stateful. They make data
available wherever it is required. This increases performance and autonomy. No
remote calls needed!

52 | Chapter 6: Processing Events with Stateful Functions

http://bit.ly/2GaCRZO
http://bit.ly/2IUPHJa
http://bit.ly/2um4IAK
http://bit.ly/2pG47Ff
http://bit.ly/2pLP5x0


Of course, being stateful comes with its downsides, but it is optional, and real-
world streaming systems blend together all three approaches. We go into the
detail of how these streaming operations work in Chapter 14.

Summary | 53





1 See https://martinfowler.com/eaaDev/EventSourcing.html and http://bit.ly/2pLKRFF.

CHAPTER 7

Event Sourcing, CQRS, and Other Stateful
Patterns

In Chapter 5 we introduced the Event Collaboration pattern, where events
describe an evolving business process—like processing an online purchase or
booking and settling a trade—and several services collaborate to push that work‐
flow forward.

This leads to a log of every state change the system makes, held immutably,
which in turn leads to two related patterns, Command Query Response Segrega‐
tion (CQRS) and Event Sourcing,1 designed to help systems scale and be less
prone to corruption. This chapter explores what these concepts mean, how they
can be implemented, and when they should be applied.

Event Sourcing, Command Sourcing, and CQRS in a
Nutshell
At a high level, Event Sourcing is just the observation that events (i.e., state
changes) are a core element of any system. So, if they are stored, immutably, in
the order they were created in, the resulting event log provides a comprehensive
audit of exactly what the system did. What’s more, we can always rederive the
current state of the system by rewinding the log and replaying the events in
order.

CQRS is a natural progression from this. As a simple example, you might write
events to Kafka (write model), read them back, and then push them into a data‐
base (read model). In this case Kafka maps the read model onto the write model

55

https://martinfowler.com/eaaDev/EventSourcing.html
http://bit.ly/2pLKRFF
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html


asynchronously, decoupling the two in time so the two parts can be optimized
independently.

Command Sourcing is essentially a variant of Event Sourcing but applied to
events that come into a service, rather than via the events it creates.

That’s all a bit abstract, so let’s walk through the example in Figure 7-1. We’ll use
one similar to the one used in the previous chapter, where a user makes an online
purchase and the resulting order is validated and returned.

Figure 7-1. A simple order validation workflow

When a purchase is made (1), Command Sourcing dictates that the order request
be immediately stored as an event in the log, before anything happens (2). That
way, should anything go wrong, the service can be rewound and replayed—for
example, to recover from a corruption.

Next, the order is validated, and another event is stored in the log to reflect the
resulting change in state (3). In contrast to an update-in-place persistence model
like CRUD (create, read, update, delete), the validated order is represented as an
entirely new event, being appended to the log rather than overwriting the exist‐
ing order. This is the essence of Event Sourcing.

Finally, to query orders, a database is attached to the resulting event stream,
deriving an event-sourced view that represents the current state of orders in the
system (4). So (1) and (4) provide the Command and Query sides of CQRS.

These patterns have a number of benefits, which we will examine in detail in the
subsequent sections.

56 | Chapter 7: Event Sourcing, CQRS, and Other Stateful Patterns

http://bit.ly/1G4WdV1


Version Control for Your Data
When you store events in a log, it behaves a bit like a version control system for
your data. Consider the situation illustrated in Figure 7-2. If a programmatic bug
is introduced—let’s say a timestamp field was interpreted with the wrong time
zone—you would get a data corruption. The corruption would make its way into
the database. It would also make it into interactions the service makes with other
services, making the corruption more widespread and harder to fix.

Figure 7-2. A programmatic bug can lead to data corruption, both in the service’s
own database as well as in data it exposes to other services

Recovering from this situation is tricky for a couple of reasons. First, the original
inputs to the system haven’t been recorded exactly, so we only have the corrup‐
ted version of the order. We will have to uncorrupt it manually. Second, unlike a
version control system, which can travel back in time, a database is mutated in
place, meaning the previous state of the system is lost forever. So there is no easy
way for this service to undo the damage the corruption did.

To fix this, the programmer would need to go through a series of steps: applying
a fix to the software, running a database script to fix the corrupted timestamps in
the database, and finally, working out some way of resending any corrupted data
previously sent to other services. At best this will involve some custom code that
pulls data out of the database, fixes it up, and makes new service calls to redis‐
tribute the corrected data. But because the database is lossy—as values are over‐
written—this may not be enough. (If rather than the release being fixed, it was
rolled back to a previous version after some time running as the new version, the
data migration process would likely be even more complex.)

Version Control for Your Data | 57



A replayable log turns ephemeral messaging into messaging that
remembers.

Switching to an Event/Command Sourcing approach, where both inputs and
state changes are recorded, might look something like Figure 7-3.

Figure 7-3. Adding Kafka and an Event Sourcing approach to the system described
in Figure 7-2 ensures that the original events are preserved before the code, and
bug, execute

As Kafka can store events for as long as we need (as discussed in “Long-Term
Data Storage” on page 25 in Chapter 4), correcting the timestamp corruption is
now a relatively simple affair. First the bug is fixed, then the log is rewound to
before the bug was introduced, and the system is replayed from the stream of
order requests. The database is automatically overwritten with corrected time‐
stamps, and new events are published downstream, correcting the previous cor‐
rupted ones. This ability to store inputs, rewind, and replay makes the system far
better at recovering from corruptions and bugs.

So Command Sourcing lets us record our inputs, which means the system can
always be rewound and replayed. Event Sourcing records our state changes,
which ensures we know exactly what happened during our system’s execution,
and we can always regenerate our current state (in this case the contents of the
database) from this log of state changes (Figure 7-4).

58 | Chapter 7: Event Sourcing, CQRS, and Other Stateful Patterns



Figure 7-4. Command Sourcing provides straight-through reprocessing from the
original commands, while Event Sourcing rederives the service’s current state from
just the post-processed events in the log

Being able to store an ordered journal of state changes is useful for debugging
and traceability purposes, too, answering retrospective questions like “Why did
this order mysteriously get rejected?” or “Why is this balance suddenly in the
red?”—questions that are harder to answer with mutable data storage.

Event Sourcing ensures every state change in a system is recorded,
much like a version control system. As the saying goes, “Accountants
don’t use erasers.”

It is also worth mentioning that there are other well-established database pat‐
terns that provide some of these properties. Staging tables can be used to hold
unvalidated inputs, triggers can be applied in many relational databases to create
audit tables, and Bitemporal databases also provide an auditable data structure.
These are all useful techniques, but none of them lends itself to “rewind and
replay” functionality without a significant amount of effort on the programmer’s
part. By contrast, with the Event Sourcing approach, there is little or no addi‐
tional code to write or test. The primary execution path is used both for runtime
execution as well as for recovery.

Making Events the Source of Truth
One side effect of the previous example is that the application of Event Sourcing
means the event, not the database record, is the source of truth. Making events
first-class entities in this way leads to some interesting implications.

If we consider the order request example again, there are two versions of the
order: one in the database and one in the notification. This leads to a couple of
different issues. The first is that both the notification and database update must
be made atomically. Imagine if a failure happens midway between the database

Making Events the Source of Truth | 59

http://bit.ly/2DWq8DO
http://bit.ly/2GdJwhI
http://bit.ly/2pG4sYx


being updated and the notification being sent (Figure 7-5). The best-case sce‐
nario is the creation of duplicate notifications. The worst-case scenario is that the
notification might not be made at all. This issue can worsen in complex systems,
as we discuss at length in Chapter 12, where we look at Kafka’s transactions fea‐
ture.

Figure 7-5. The order request is validated and a notification is sent to other serv‐
ices, but the service fails before the data is persisted to the database

The second problem is that, in practice, it’s quite easy for the data in the database
and the data in the notification to diverge as code churns and features are imple‐
mented. The implication here is that, while the database may well be correct, if
the notifications don’t quite match, then the data quality of the system as a whole
suffers. (See “The Data Divergence Problem” on page 95 in Chapter 10.)

Event Sourcing addresses both of these problems by making the event stream the
primary source of truth (Figure 7-6). Where data needs to be queried, a read
model or event-sourced view is derived directly from the stream.

Event Sourcing ensures that the state a service communicates and the
state a service saves internally are the same.

This actually makes a lot of sense. In a traditional system the database is the
source of truth. This is sensible from an internal perspective. But if you consider
it from the point of view of other services, they don’t care what is stored inter‐
nally; it’s the data everyone else sees that is important. So the event being the
source of truth makes a lot of sense from their perspective. This leads us to
CQRS.

60 | Chapter 7: Event Sourcing, CQRS, and Other Stateful Patterns



2 Some databases—for example, DRUID—make this separation quite concrete. Other databases block

until indexes have been updated.

Command Query Responsibility Segregation
As discussed earlier, CQRS (Command Query Responsibility Segregation) sepa‐
rates the write path from the read path and links them with an asynchronous
channel (Figure 7-6). This idea isn’t limited to application design—it comes up in
a number of other fields too. Databases, for example, implement the idea of a
write-ahead log. Inserts and updates are immediately journaled sequentially to
disk, as soon as they arrive. This makes them durable, so the database can reply
back to the user in the knowledge that the data is safe, but without having to wait
for the slow process of updating the various concurrent data structures like
tables, indexes, and so on.2 The point is that (a) should something go wrong, the
internal state of the database can be recovered from the log, and (b) writes and
reads can be optimized independently.

Figure 7-6. When we make the event stream the source of truth, the notification
and the database update come from the same event, which is stored immutably
and durably; when we split the read and write model, the system is an implementa‐
tion of the CQRS design pattern

When we apply CQRS in our applications, we do it for very similar reasons.
Inputs are journaled to Kafka, which is much faster than writing to a database.
Segregating the read model and updating it asynchronously means that the
expensive maintenance of update-in-place data structures, like indexes, can be
batched together so they are more efficient. This means CQRS will display better
overall read and write performance when compared to an equivalent, more tradi‐
tional, CRUD-based system.

Command Query Responsibility Segregation | 61

http://druid.io/
https://en.wikipedia.org/wiki/Write-ahead_logging


Of course there is no free lunch. The catch is that, because the read model is
updated asynchronously, it will run slightly behind the write model in time. So if
a user performs a write, then immediately performs a read, it is possible that the
entry they wrote originally has not had time to propagate, so they can’t “read
their own writes.” As we will see in the example in “Collapsing CQRS with a
Blocking Read” on page 142 in Chapter 15, there are strategies for addressing this
problem.

Materialized Views
There is a close link between the query side of CQRS and a materialized view in a
relational database. A materialized view is a table that contains the results of
some predefined query, with the view being updated every time any of the under‐
lying tables change.

Materialized views are used as a performance optimization so, instead of a query
being computed when a user needs data, the query is precomputed and stored.
For example, if we wanted to display how many active users there are on each
page of a website, this might involve us scanning a database table of user visits,
which would be relatively expensive to compute. But if we were to precompute
the query, the summary of active users that results will be comparatively small
and hence fast to retrieve. Thus, it is a good candidate to be precomputed.

We can create exactly the same construct with CQRS using Kafka. Writes go into
Kafka on the command side (rather than updating a database table directly). We
can transform the event stream in a way that suits our use case, typically using
Kafka Streams or KSQL, then materialize it as a precomputed query or material‐
ized view. As Kafka is publish-subscribe, we can have many such views, precom‐
puted to match the various use cases we have (Figure 7-7). But unlike with
materialized views in a relational database, the underlying events are decoupled
from the view. This means (a) they can be scaled independently, and (b) the writ‐
ing process (so whatever process records user visits) doesn’t have to wait for the
view to be computed before it returns.

62 | Chapter 7: Event Sourcing, CQRS, and Other Stateful Patterns



Figure 7-7. CQRS allows multiple read models, which may be optimized for a spe‐
cific use case, much like a materialized view, or may use a different storage tech‐
nology

This idea of storing data in a log and creating many derived views is taken fur‐
ther when we discuss “Event Streams as a Shared Source of Truth” in Chapter 9.

If an event stream is the source of truth, you can have as many different
views in as many different shapes, sizes, or technologies as you may
need. Each is focused on the use case at hand.

Polyglot Views
Whatever sized data problem you have, be it free-text search, analytic aggrega‐
tion, fast key/value lookups, or a host of others, there is a database available
today that is just right for your use case. But this also means there is no “one-
size-fits-all” approach to databases, at least not anymore. A supplementary bene‐
fit of using CQRS is that a single write model can push data into many read
models or materialized views. So your read model can be in any database, or even
a range of different databases.

A replayable log makes it easy to bootstrap such polyglot views from the same
data, each tuned to different use cases (Figure 7-7). A common example of this is
to use a fast key/value store to service queries from a website, but then use a
search engine like Elasticsearch or Solr to support the free-text-search use case.

Polyglot Views | 63

http://cs.brown.edu/~ugur/fits_all.pdf


Whole Fact or Delta?
One question that arises in event-driven—particularly event-sourced—programs,
is whether the events should be modeled as whole facts (a whole order, in its
entirety) or as deltas that must be recombined (first a whole order message, fol‐
lowed by messages denoting only what changed: “amount updated to $5,” “Order
cancelled,” etc.).

As an analogy, imagine you are building a version control system like SVN or
Git. When a user commits a file for the first time, the system saves the whole file
to disk. Subsequent commits, reflecting changes to that file, might save only the
delta—that is, just the lines that were added, changed, or removed. Then, when
the user checks out a certain version, the system opens the version-0 file and
applies all subsequent deltas, in order, to derive the version the user asked for.

The alternate approach is to simply store the whole file, exactly as it was at the
time it was changed, for every single commit. This will obviously take more stor‐
age, but it means that checking out a specific version from the history is a quick
and easy file retrieval. However, if the user wanted to compare different versions,
the system would have to use a “diff” function.

These two approaches apply equally to data we keep in the log. So to take a more
business-oriented example, an order is typically a set of line items (i.e., you often
order several different items in a single purchase). When implementing a system
that processes purchases, you might wonder: should the order be modeled as a
single order event with all the line items inside it, or should each line item be a
separate event with the order being recomposed by scanning the various inde‐
pendent line items? In domain-driven design, an order of this latter type is
termed an aggregate (as it is an aggregate of line items) with the wrapping entity
—that is, the order—being termed an aggregate root.

As with many things in software design, there are a host of different opinions on
which approach is best for a certain use case. There are a few rules of thumb that
can help, though. The most important one is journal the whole fact as it arrived.
So when a user creates an order, if that order turns up with all line items inside it,
we’d typically record it as a single entity.

But what happens when a user cancels a single line item? The simple solution is
to just journal the whole thing again, as another aggregate but cancelled. But
what if for some reason the order is not available, and all we get is a single can‐
celed line item? Then there would be the temptation to look up the original order
internally (say from a database), and combine it with the cancellation to create a
new Cancelled Order with all its line items embedded inside it. This typically
isn’t a good idea, because (a) we’re not recording exactly what we received, and
(b) having to look up the order in the database erodes the performance benefits

64 | Chapter 7: Event Sourcing, CQRS, and Other Stateful Patterns

https://en.wikipedia.org/wiki/Domain-driven_design


of CQRS. The rule of thumb is record what you receive, so if only one line item
arrives, record that. The process of combining can be done on read.

Conversely, breaking events up into subevents as they arrive often isn’t good
practice, either, for similar reasons. So, in summary, the rule of thumb is record
exactly what you receive, immutably.

Implementing Event Sourcing and CQRS with Kafka
Kafka ships with two different APIs that make it easier to build and manage
CQRS-styled views derived from events stored in Kafka. The Kafka Connect API
and associated Connector ecosystem provides an out-of-the-box mechanism to
push data into, or pull data from, a variety of databases, data sources, and data
sinks. In addition, the Kafka Streams API ships with a simple embedded data‐
base, called a state store, built into the API (see “Windows, Joins, Tables, and
State Stores” on page 135 in Chapter 14).

In the rest of this section we cover some useful patterns for implementing Event
Sourcing and CQRS with these tools.

Build In-Process Views with Tables and State Stores in Kafka
Streams
Kafka’s Streams API provides one of the simplest mechanisms for implementing
Event Sourcing and CQRS because it lets you implement a view natively, right
inside the Kafka Streams API—no external database needed!

At its simplest this involves turning a stream of events in Kafka into a table that

can be queried locally. For example, turning a stream of Customer events into a

table of Customers that can be queried by CustomerId takes only a single line of
code:

KTable<CustomerId, Customer> customerTable = builder.table("customer-topic");

This single line of code does several things:

• It subscribes to events in the customer topic.

• It resets to the earliest offset and loads all Customer events into the Kafka
Streams API. That means it loads the data from Kafka into your service.
(Typically a compacted topic is used to reduce the initial/worst-case load
time.)

• It pushes those events into a state store (Figure 7-8), a local, disk-resident
hash table, located inside the Kafka Streams API. This results in a local, disk-

resident table of Customers that can be queried by key or by range scan.

Implementing Event Sourcing and CQRS with Kafka | 65

http://bit.ly/2IR1gky
http://bit.ly/2IR1gky


Figure 7-8. State stores in Kafka Streams can be used to create use-case-specific
views right inside the service

In Chapter 15 we walk through a set of richer code examples that create different
types of views using tables and state stores, along with discussing how this
approach can be scaled.

Writing Through a Database into a Kafka Topic with Kafka
Connect
One way to get events into Kafka is to write through a database table into a Kafka
topic. Strictly speaking, this isn’t an Event Sourcing– or CQRS-based pattern, but
it’s useful nonetheless.

In Figure 7-9, the orders service writes orders to a database. The writes are con‐
verted into an event stream by Kafka’s Connect API. This triggers downstream
processing, which validates the order. When the “Order Validated” event returns
to the orders service, the database is updated with the final state of the order,
before the call returns to the user.

66 | Chapter 7: Event Sourcing, CQRS, and Other Stateful Patterns



Figure 7-9. An example of writing through a database to an event stream

The most reliable and efficient way to achieve this is using a technique called
change data capture (CDC). Most databases write every modification operation
to a write-ahead log, so, should the database encounter an error, it can recover its
state from there. Many also provide some mechanism for capturing modification
operations that were committed. Connectors that implement CDC repurpose
these, translating database operations into events that are exposed in a messaging
system like Kafka. Because CDC makes use of a native “eventing” interface it is
(a) very efficient, as the connector is monitoring a file or being triggered directly
when changes occur, rather than issuing queries through the database’s main
API, and (b) very accurate, as issuing queries through the database’s main API
will often create an opportunity for operations to be missed if several arrive, for
the same row, within a polling period.

In the Kafka ecosystem CDC isn’t available for every database, but the ecosystem
is growing. Some popular databases with CDC support in Kafka Connect are
MySQL, Postgres, MongoDB, and Cassandra. There are also proprietary CDC
connectors for Oracle, IBM, SQL Server, and more. The full list of connectors is
available on the Connect home page.

The advantage of this database-fronted approach is that it provides a consistency
point: you write through it into Kafka, meaning you can always read your own
writes.

Implementing Event Sourcing and CQRS with Kafka | 67

https://en.wikipedia.org/wiki/Change_data_capture
http://bit.ly/2IR1gky


Writing Through a State Store to a Kafka Topic in Kafka Streams
The same pattern of writing through a database into a Kafka topic can be
achieved inside Kafka Streams, where the database is replaced with a Kafka
Streams state store (Figure 7-10). This comes with all the benefits of writing
through a database with CDC, but has a few additional advantages:

• The database is local, making it faster to access.

• Because the state store is wrapped by Kafka Streams, it can partake in trans‐
actions, so events published by the service and writes to the state store are
atomic.

• There is less configuration, as it’s a single API (no external database, and no
CDC connector to configure).

We discuss this use of state stores for holding application-level state in the sec‐
tion “Windows, Joins, Tables, and State Stores” on page 135 in Chapter 14.

Figure 7-10. Applying the write-through pattern with Kafka Streams and a state
store

Unlocking Legacy Systems with CDC
In reality, most projects have some element of legacy and renewal, and while
there is a place for big-bang redesigns, incremental change is typically an easier
pill to swallow.

The problem with legacy is that there is usually a good reason for moving away
from it: the most common being that it is hard to change. But most business
operations in legacy applications will converge on their database. This means
that, no matter how creepy the legacy code is, the database provides a coherent
seam to latch into the existing business workflow, from where we can extract
events via CDC. Once we have the event stream, we can plug in new event-driven
services that allow us to evolve away from the past, incrementally (Figure 7-11).

68 | Chapter 7: Event Sourcing, CQRS, and Other Stateful Patterns

http://bit.ly/2Ga2VEc


Figure 7-11. Unlocking legacy data using Kafka’s Connect API

So part of our legacy system might allow admins to manage and update the prod‐
uct catalog. We might retain this functionality by importing the dataset into
Kafka from the legacy system’s database. Then that product catalog can be reused
in the validation service, or any other.

An issue with attaching to legacy, or any externally sourced dataset, is that the
data is not always well formed. If this is a problem, consider adding a post-
processing stage. Kafka Connect’s single message transforms are useful for this
type of operation (for example, adding simple adjustments or enrichments),
while Kafka’s Streams API is ideal for simple to very complex manipulations and
for precomputing views that other services need.

Query a Read-Optimized View Created in a Database
Another common pattern is to use the Connect API to create a read-optimized,
event-sourced view, built inside a database. Such views can be created quickly
and easily in any number of different databases using the sink connectors avail‐
able for Kafka Connect. As we discussed in the previous section, these are often
termed polyglot views, and they open up the architecture to a wide range of data
storage technologies.

In the example in Figure 7-12, we use Elasticsearch for its rich indexing and
query capabilities, but whatever shape of problem you have, these days there is a
database that fits. Another common pattern is to precompute the contents as a
materialized view using Kafka Streams, KSQL, or Kafka Connect’s single message
transforms feature (see “Materialized Views” on page 62 earlier in this chapter).

Implementing Event Sourcing and CQRS with Kafka | 69

http://bit.ly/2DTc8uJ
http://bit.ly/2GdLoHg
http://bit.ly/2GdLoHg
http://bit.ly/2DTc8uJ
http://bit.ly/2DTc8uJ


Figure 7-12. Full-text search is added via an Elasticsearch database connected
through Kafka’s Connect API

Memory Images/Prepopulated Caches
Finally, we should mention a pattern called MemoryImage (Figure 7-13). This is
just a fancy term, coined by Martin Fowler, for caching a whole dataset into
memory—where it can be queried—rather than making use of an external data‐
base.

Figure 7-13. A MemoryImage is a simple “cache” of an entire topic loaded into a
service so it can be referenced locally

MemoryImages provide a simple and efficient model for datasets that (a) fit in
memory and (b) can be loaded in a reasonable amount of time. To reduce the
load time issue, it’s common to keep a snapshot of the event log using a compac‐
ted topic (which represents the latest set of events, without any of the version his‐
tory). The MemoryImage pattern can be hand-crafted, or it can be implemented
with Kafka Streams using in-memory state stores. The pattern suits high-
performance use cases that don’t need to overflow to disk.

70 | Chapter 7: Event Sourcing, CQRS, and Other Stateful Patterns

http://bit.ly/2ISmuyI


The Event-Sourced View
Throughout the rest of this book we will use the term event-sourced view
(Figure 7-14) to refer to a query resource (database, memory image, etc.) created
in one service from data authored by (and hence owned) by another.

Figure 7-14. An event-sourced view implemented with KSQL and a database; if
built with Kafka Streams, the query and view both exist in the same layer

What differentiates an event-sourced view from a typical database, cache, and the
like is that, while it can represent data in any form the user requires, its data is
sourced directly from the log and can be regenerated at any time.

For example, we might create a view of orders, payments, and customer informa‐
tion, filtering anything that doesn’t ship within the US. This would be an event-
sourced view if, when we change the view definition—say to include orders that
ship to Canada—we can automatically recreate the view in its entirety from the
log.

An event-sourced view is equivalent to a projection in Event Sourcing parlance.

Summary
In this chapter we looked at how an event can be more than just a mechanism for
notification, or state transfer. Event Sourcing is about saving state using the exact
same medium we use to communicate it, in a way that ensures that every change
is recorded immutably. As we noted in the section “Version Control for Your
Data” on page 57, this makes recovery from failure or corruption simpler and
more efficient when compared to traditional methods of application design.

CQRS goes a step further by turning these raw events into an event-sourced view
—a queryable endpoint that derives itself (and can be rederived) directly from
the log. The importance of CQRS is that it scales, by optimizing read and write
models independently of one another.

Summary | 71



We then looked at various patterns for getting events into the log, as well as
building views using Kafka Streams and Kafka’s Connect interface and our data‐
base of choice.

Ultimately, from the perspective of an architect or programmer, switching to this
event-sourced approach will have a significant effect on an application’s design.
Event Sourcing and CQRS make events first-class citizens. This allows systems to
relate the data that lives inside a service directly to the data it shares with others.
Later we’ll see how we can tie these together with Kafka’s Transactions API. We
will also extend the ideas introduced in this chapter by applying them to inter‐
team contexts, with the “Event Streaming as a Shared Source of Truth” approach
discussed in Chapter 9.

72 | Chapter 7: Event Sourcing, CQRS, and Other Stateful Patterns



PART III

Rethinking Architecture at
Company Scales

If you squint a bit, you can see the whole of your organization’s systems and data
flows as a single distributed database.

—Jay Kreps, 2013





CHAPTER 8

Sharing Data and Services Across an
Organization

When we build software, our main focus is, quite rightly, aimed at solving some
real-world problem. It might be a new web page, a report of sales features, an
analytics program searching for fraudulent behavior, or an almost infinite set of
options that provide clear and physical benefits to our users. These are all very
tangible goals—goals that serve our business today.

But when we build software we also consider the future—not by staring into a
crystal ball in some vain attempt to predict what our company will need next
year, but rather by facing up to the fact that whatever does happen, our software
will need to change. We do this without really thinking about it. We carefully
modularize our code so it is comprehensible and reusable. We write tests, run
continuous integration, and maybe even do continuous deployment. These
things take effort, yet they bear little resemblance to anything a user might ask
for directly. We do these things because they make our code last, and that doesn’t

mean sitting on some filesystem the far side of git push. It means providing for
a codebase that is changed, evolved, refactored, and repurposed. Aging in soft‐
ware isn’t a function of time; it is a function of how we choose to change it.

But when we design systems, we are less likely to think about how they will age.
We are far more likely to ask questions like: Will the system scale as our user base
increases? Will response times be fast enough to keep users happy? Will it pro‐
mote reuse? In fact, you might even wonder what a system designed to last a long
time looks like.

If we look to history to answer this question, it would point us to mainframe
applications for payroll, big-name client programs like Excel or Safari, or even
operating systems like Windows or Linux. But these are all complex, individual
programs that have been hugely valuable to society. They have also all been diffi‐

75



1 Tom DeMarco, Slack: Getting Past Burnout, Busywork, and the Myth of Total Efficiency (New York:

Broadway Books, 2001).

cult to evolve, particularly with regard to organizing a large engineering effort
around a single codebase. So if it’s hard to build large but individual software
programs, how do we build the software that runs a company? This is the ques‐
tion we address in this particular section: how do we design systems that age well
at company scales and keep our businesses nimble?

As it happens, many companies sensibly start their lives with a single system,
which becomes monolithic as it slowly turns into the proverbial big ball of mud.
The most common response to this today is to break the monolith into a range of
different applications and services. In Chapter 1 we talked about companies like
Amazon, LinkedIn, and Netflix, which take a service-based approach to this. This
is no panacea; in fact, many implementations of the microservices pattern suffer
from the misconceived notion that modularizing software over the network will
somehow improve its sustainability. This of course isn’t what microservices are
really about. But regardless of your interpretation, breaking a monolith, alone,
will do little to improve sustainability. There is a very good reason for this too.
When we design systems at company scales, those systems become far more
about people than they are about software.

As a company grows it forms into teams, and those teams have different respon‐
sibilities and need to be able to make progress without extensive interaction with
one another. The larger the company, the more of this autonomy they need. This
is the basis of management theories like Slack.1

In stark contrast to this, total independence won’t work either. Different teams
or departments need some level of interaction, or at least a shared sense of pur‐
pose. In fact, dividing sociological groups is a tactic deployed in both politics and
war as a mechanism for reducing the capabilities of an opponent. The point here
is that a balance must be struck, organizationally, in terms of the way people,
responsibility, and communication structures are arranged in a company, and
this applies as acutely to software as it does to people, because beyond the con‐
fines of a single application, people factors invariably dominate.

Some companies tackle this at an organizational level using approaches like the
Inverse Conway Maneuver, which applies the idea that, if the shape of software
and the shape of organizations are intrinsically linked (as Conway argued), then
it’s often easier to change the organization and let the software follow suit than it
is to do the reverse. But regardless of the approach taken, when we design soft‐
ware systems where components are operated and evolved independently, the
problem we face has three distinct parts—organization, software, and data—
which are all intrinsically linked. To complicate matters further, what really dif‐

76 | Chapter 8: Sharing Data and Services Across an Organization

http://bit.ly/2IRjX7O
http://bit.ly/2IRjX7O
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Divide_and_rule
https://en.wikipedia.org/wiki/Divide_and_rule
https://thght.works/2GvPP3K


2 Sam Newman, Building Microservices (Sebastopol, CA: O’Reilly, 2014).

ferentiates the good systems from the bad is their ability to manage these three
factors as they evolve, independently, over time.

While this may seem a little abstract, you have no doubt felt the interplay
between these forces before. Say you’re working on a project, but to finish it you
need three other teams to complete work on their side first—you know intui‐
tively that it’s going to take longer to build, schedule, and release. If someone
from another team asks if their application can pull some data out of your data‐
base, you know that’s probably going to lead to pain in the long run, as you’re left
wondering if your latest release will break the dependency they have on you.
Finally, while it might seem trivial to call a couple of REST services to populate
your user interface, you know that an outage on their side is going to mean you
get called at 3 a.m., and the more complex the dependencies get, the harder it’s
going to be to figure out why the system doesn’t work. These are all examples of
problems we face when an organization, its software, and its data evolve slowly.

The Microservices pattern is unusually opinionated in this regard. It comes down
hard on independence in organization, software, and data. Microservices are run
by different teams, have different deployment cycles, don’t share code, and don’t
share databases.2 The problem is that replacing this with a web of RPC/REST
calls isn’t generally a preferable solution. This leads to an important tension: we
want to promote reuse to develop software quickly, but at the same time the
more dependencies we have, the harder it is to change.

Reuse can be a bad thing. Reuse lets us develop software quickly and
succinctly, but the more we reuse a component, the more dependencies
that component has, and the harder it is to change.

To better understand this tension, we need to question some core principles of
software design—principles that work wonderfully when we’re building a single
application, but fare less well when we build software that spans many teams.

Encapsulation Isn’t Always Your Friend
As software engineers we’re taught to encapsulate. If you’re building a library for
other people to use, you’ll carefully pick a contract that suits the functionality
you want to expose. If you’re building a service-based system, you might be
inclined to follow a similar process. This works well if we can cleanly separate
responsibilities between the different services. A single sign-on (SSO) service, for
example, has a well-defined role, which is cleanly separated from the roles other

Encapsulation Isn’t Always Your Friend | 77

http://shop.oreilly.com/product/0636920033158.do


3 See https://www.infoq.com/news/2017/04/tornhill-prioritise-tech-debt and http://bit.ly/2pKa2rR.

services play (Figure 8-1). This clean separation means that, even in the face of
rapid requirement churn, it’s unlikely the SSO service will need to change. It
exists in a tightly bounded context.

Figure 8-1. An SSO service provides a good example of encapsulation and reuse

The problem is that, in the real world, business services can’t typically retain the
same clean separation of concerns, meaning new requirements will inevitably
crosscut service boundaries and several services will need to change at once. This
can be measured.3 So if one team needs to implement a feature, and that requires
another team to make a code change, we end up having to make changes to both
services at around the same time. In a monolithic system this is pretty straight‐
forward—you make the change and then do a release—but it’s considerably more
painful where independent services must synchronize. The coordination between
teams and release cycles erodes agility.

This problem isn’t actually restricted to services. Shared libraries suffer from the
same problem. If you work in retail, it might seem sensible to create a library that
models how customers, orders, payments, and the like all relate to one another.
You could include common logic for standard operations like returns and
refunds. Lots of people did this in the early days of object orientation, but it
turned out to be quite painful because suddenly the most sensitive part of your
system was coupled to many different programs, making it really fiddly to
change and release. This is why microservices typically don’t share a single
domain model. But some library reuse is of course OK. Take a logging library,
for example—much like the earlier SSO example, you’re unlikely to have a busi‐
ness requirement that needs the logging library to change.

78 | Chapter 8: Sharing Data and Services Across an Organization

https://www.infoq.com/news/2017/04/tornhill-prioritise-tech-debt
http://bit.ly/2pKa2rR


But in reality, of course, library reuse comes with a get-out clause: the code can
be implemented anywhere. Say you did use the aforementioned shared retail
domain model. If it becomes too painful to use, you could always just write the
code yourself! (Whether that is actually a good idea is a different discussion.) But
when we consider different applications or services that share data with one
another, there is no such solution: if you don’t have the data, there is literally
nothing you can do.

This leads to two fundamental differences between services and shared libraries:

• A service is run and operated by someone else.

• A service typically has data of its own, whereas a library (or database)
requires you to input any data it needs.

Data sits at the very heart of this problem: most business services inevitably rely
heavily on one another’s data. If you’re an online retailer, the stream of orders,
the product catalog, or the customer information will find its way into the
requirements of many of your services. Each of these services needs broad access
to these datasets to do its work, and there is no temporary workaround for not
having the data you need. So you need access to shared datasets, but you also
want to stay loosely coupled. This turns out to be a pretty hard bargain to strike.

The Data Dichotomy
Encapsulation encourages us to hide data, but data systems have little to do with
encapsulation. In fact, quite the opposite: databases do everything they can to
expose the data they hold (Figure 8-2). They come with wonderfully powerful,
declarative interfaces that can contort the data they hold into pretty much any
shape you might desire. That’s exactly what a data scientist needs for an explora‐
tory investigation, but it’s not so great for managing the spiral of interservice
dependencies in a burgeoning service estate.

The Data Dichotomy | 79



Figure 8-2. Services encapsulate the data they hold to reduce coupling and aid
reuse; databases amplify the data they hold to provide greater utility to their user

So we find ourselves faced with a conundrum, a dichotomy: databases are about
exposing data and making it useful. Services are about hiding it so they can stay
decoupled. These two forces are fundamental. They underlie much of what we
do, subtly jostling for supremacy in the systems we build.

What Happens to Systems as They Evolve?
As systems evolve and grow we see the effects of this data dichotomy play out in
a couple of different ways.

The God Service Problem
As data services grow they inevitably expose an increasing set of functions, to the
point where they start to look like some form of kooky, homegrown database
(Figure 8-3).

80 | Chapter 8: Sharing Data and Services Across an Organization



Figure 8-3. Service interfaces inevitably grow over time

Now creating something that looks like a kooky, shared database can lead to a set
of issues of its own. The more functionality, data, and users data services have,
the more tightly coupled they become and the harder (and more expensive) they
are to operate and evolve.

The REST-to-ETL Problem
A second, often more common, issue when you’re faced with a data service is
that it actually becomes preferable to suck the data out so it can be held and
manipulated locally (Figure 8-4). There are lots of reasons for this to happen in
practice, but some of the main ones are:

• The data needs to be combined with some other dataset.

• The data needs to be closer, either due to geography or to be used offline
(e.g., on a mobile).

• The data service displays operational issues, which cause outages down‐
stream.

• The data service doesn’t provide the functionality the client needs and/or
can’t change quick enough.

But to extract data from some service, then keep that data up to date, you need
some kind of polling mechanism. While this is not altogether terrible, it isn’t
ideal either.

What Happens to Systems as They Evolve? | 81



Figure 8-4. Data is moved from service to service en masse

What’s more, as this happens again and again in larger architectures, with data
being extracted and moved from service to service, little errors or idiosyncrasies
often creep in. Over time these typically worsen and the data quality of the whole
ecosystem starts to suffer. The more mutable copies, the more data will diverge
over time.

Making matters worse, divergent datasets are very hard to fix in retrospect.
(Techniques like master data management are in many ways a Band-aid over
this.) In fact, some of the most intractable technology problems that businesses
encounter arise from divergent datasets proliferating from application to applica‐
tion. This issue is discussed in more detail in Chapter 10.

So a cyclical pattern of behavior emerges between (a) the drive to centralize data‐
sets to keep them accurate and (b) the temptation (or need) to extract datasets
and go it alone—an endless cycle of data inadequacy (Figure 8-5).

82 | Chapter 8: Sharing Data and Services Across an Organization

https://en.wikipedia.org/wiki/Master_data_management


Figure 8-5. The cycle of data inadequacy

Make Data on the Outside a First-Class Citizen
To address these various issues, we need to think about shared data in a slightly
different way. We need to consider it a first-class citizen of the architectures we
build. Pat Helland makes this distinction in his paper “Data on the Inside and
Data on the Outside.”

One of the key insights he makes is that the data services share needs to be
treated differently from the data they hold internally. Data on the outside is hard
to change, because many programs depend upon it. But, for this very reason,
data on the outside is the most important data of all.

A second important insight is that service teams need to adopt an openly
outward-facing role: one designed to serve, and be an integral part of, the wider
ecosystem. This is very different from the way traditional applications are built:
written to operate in isolation, with methods for exposing their data bolted on
later as an afterthought.

With these points in mind it becomes clear that data on the outside—the data
services share—needs to be carefully curated and nurtured, but to keep our free‐
dom to iterate we need to turn it into data on the inside so that we can make it
our own.

The problem is that none of the approaches available today—service interfaces,
messaging, or a shared database—provide a good solution for dealing with this
transition (Figure 8-6), for the following reasons:

Make Data on the Outside a First-Class Citizen | 83

http://bit.ly/2DWuVFm


• Service interfaces form tight point-to-point couplings, make it hard to share
data at any level of scale, and leave the unanswered question: how do you
join the many islands of state back together?

• Shared databases concentrate use cases into a single place, and this stifles
progress.

• Messaging moves data from a tightly coupled place (the originating service)
to a loosely coupled place (the service that is using the data). This means
datasets can be brought together, enriched, and manipulated as required.
Moving data locally typically improves performance, as well as decoupling
sender and receiver. Unfortunately, messaging systems provide no historical
reference, which means it’s harder to bootstrap new applications, and this
can lead to data quality issues over time (discussed in “The Data Divergence
Problem” on page 95 in Chapter 10).

Figure 8-6. Tradeoff between service interfaces, messaging, and a shared database

A better solution is to use a replayable log like Kafka. This works like a kind of
event store: part messaging system, part database.

Messaging turns highly coupled, shared datasets (data on the outside)
into data a service can own and control (data on the inside). Replayable
logs go a step further by adding a central reference.

Don’t Be Afraid to Evolve
When you start a new project, form a new department, or launch a new com‐
pany, you don’t need to get everything right from the start. Most projects evolve.
They start life as monoliths, and later they add distributed components, evolve
into microservices, and add event streaming. The important point is when the
approach becomes constraining, you change it. But experienced architects know
where the tipping point for this lies. Leave it too late, and change can become too

84 | Chapter 8: Sharing Data and Services Across an Organization



4 Neil Ford, Rebecca Parsons, and Pat Kua, Building Evolutionary Architectures (Sebastopol, CA: O’Reilly,

2017).

costly to schedule. This is closely linked with the concept of fitness functions in
evolutionary architectures.4

Summary
Patterns like microservices are opinionated when it comes to services being inde‐
pendent: services are run by different teams, have different deployment cycles,
don’t share code, and don’t share databases. The problem is that replacing this
with a web of RPC calls fails to address the question: how do services get access
to these islands of data for anything beyond trivial lookups?

The data dichotomy highlights this question, underlining the tension between
the need for services to stay decoupled and their need to control, enrich, and
combine data in their own time.

This leads to three core conclusions: (1) as architectures grow and systems
become more data-centric, moving datasets from service to service becomes an
inevitable part of how systems evolve; (2) data on the outside—the data services
share—becomes an important entity in its own right; (3) sharing a database is
not a sensible solution to data on the outside, but sharing a replayable log better
balances these concerns, as it can hold datasets long-term, and it facilitates event-
driven programming, reacting to the now.

This approach can keep data across many services in sync, through a loosely cou‐
pled interface, giving them the freedom to slice, dice, enrich, and evolve data
locally.

Summary | 85

https://thght.works/2pFP51a
https://thght.works/2pFP51a




CHAPTER 9

Event Streams as a Shared
Source of Truth

As we saw in Part II of this book, events are a useful tool for system design, pro‐
viding notification, state transfer, and decoupling. For a couple of decades now,
messaging systems have leveraged these properties, moving events from system
to system, but only in the last few years have messaging systems started to be
used as a storage layer, retaining the datasets that flow through them. This cre‐
ates an interesting architectural pattern. A company’s core datasets are stored as
centralized event streams, with all the decoupling effects of a message broker
built in. But unlike traditional brokers, which delete messages once they have
been read, historic data is stored and made available to any team that needs it.
This links closely with the ideas developed in Event Sourcing (see Chapter 7) and
Pat Helland’s concept of data on the outside. ThoughtWorks calls this pattern
event streaming as the source of truth.

A Database Inside Out
“Turning the database inside out” was a phrase coined by Martin Kleppmann.
Essentially it is the idea that a database has a number of core components—a
commit log, a query engine, indexes, and caching—and rather than conflating
these concerns inside a single black-box technology like a database does, we can
split them into separate parts using stream processing tools and these parts can
exist in different places, joined together by the log. So Kafka plays the role of the
commit log, a stream processor like Kafka Streams is used to create indexes or
views, and these views behave like a form of continuously updated cache, living
inside or close to your application (Figure 9-1).

87

http://bit.ly/2DWuVFm
http://bit.ly/2DWuVFm
http://bit.ly/2DWuVFm
https://thght.works/2uin5Xb
http://bit.ly/confluent-inside-out
http://bit.ly/2pFFnN5


Figure 9-1. A streaming engine and a replayable log have the core components of a
database

As an example we might consider this pattern in the context of a simple GUI
application that lets users browse order, payment, and customer information in a
scrollable grid. Because the user can scroll the grid quickly up and down, the data
would likely need to be cached locally. But in a streaming model, rather than
periodically polling the database and then caching the result, we would define a
view that represents the exact dataset needed in the scrollable grid, and the
stream processor would take care of materializing it for us. So rather than query‐
ing data in a database, then layering caching over the top, we explicitly push data
to where it is needed and process it there (i.e., it’s inside the GUI, right next to
our code).

But while we call “turning the database inside out” a pattern, it would probably
be more accurate to call it an analogy: a different way of explaining what stream
processing is. It is a powerful one, though. One reason that it seems to resonate
with people is we have a deep-seated notion that pushing business logic into a
database is a bad idea. But the reverse—pushing data into your code—opens up a
wealth of opportunities for blending our data and our code together. So stream
processing flips the traditional approach to data and code on its head, encourag‐
ing us to bring data into the application layer—to create tables, views, and
indexes exactly where we need them.

“The database inside out” is an analogy for stream processing where the
same components we find in a database—a commit log, views, indexes,
caches—are not confined to a single place, but instead can be made
available wherever they are needed.

This idea actually comes up in a number of other areas too. The Clojure commu‐
nity talks about deconstructing the database. There are overlaps with Event
Sourcing and polyglot persistence as we discussed in Chapter 7. But the idea was

88 | Chapter 9: Event Streams as a Shared Source of Truth

http://bit.ly/1mjeyJg


originally proposed by Jay Kreps back in 2013, where he calls it “unbundling” but
frames it in a slightly different context, and this turns out to be quite important:

There is an analogy here between the role a log serves for data flow inside a dis‐
tributed database and the role it serves for data integration in a larger organiza‐
tion…if you squint a bit, you can see the whole of your organization’s systems and
data flows as a single distributed database. You can view all the individual query-
oriented systems (Redis, SOLR, Hive tables, and so on) as just particular indexes
on your data. You can view the stream processing systems like Storm or Samza as
just a very well-developed trigger and view materialization mechanism. Classical
database people, I have noticed, like this view very much because it finally
explains to them what on earth people are doing with all these different data sys‐
tems—they are just different index types!

What is interesting about Jay’s description is he casts the analogy in the context
of a whole company. The key insight is essentially the same: stream processing
segregates responsibility for data storage away from the mechanism used to
query it. So there might be one shared event stream, say for payments, but many
specialized views, in different parts of the company (Figure 9-2). But this pro‐
vides an important alternative to traditional mechanisms for data integration.
More specifically:

• The log makes data available centrally as a shared source of truth but with
the simplest possible contract. This keeps applications loosely coupled.

• Query functionality is not shared; it is private to each service, allowing teams
to move quickly by retaining control of the datasets they use.

Figure 9-2. A number of different applications and services, each with its own
views, derived from the company’s core datasets held in Kafka; the views can be
optimized for each use case

A Database Inside Out | 89

http://bit.ly/2GtMdPn


The “database inside out” idea is important because a replayable log,
combined with a set of views, is a far more malleable entity than a single
shared database. The different views can be tuned to different people’s
needs, but are all derived from the same source of truth: the log.

As we’ll see in Chapter 10, this leads to some further optimizations where each
view is optimized to target a specific use case, in much the same way that materi‐
alized views are used in relational databases to create read-optimized, use-case-
focused datasets. Of course, unlike in a relational database, the view is decoupled
from the underlying data and can be regenerated from the log should it need to
be changed. (See “Materialized Views” on page 62 in Chapter 7.)

Summary
This chapter introduced the analogy that stream processing can be viewed as a
database turned inside out, or unbundled. In this analogy, responsibility for data
storage (the log) is segregated from the mechanism used to query it (the Stream
Processing API). This makes it possible to create views and embed them exactly
where they are needed—in another application, in another geography, or on
another platform. There are two main drivers for pushing data to code in this
way:

• As a performance optimization, by making data local

• To decouple the data in an organization, but keep it close to a single shared
source of truth

So at an organizational level, the pattern forms a kind of database of databases
where a single repository of event data is used to feed many views, and each view
can flex with the needs of that particular team.

90 | Chapter 9: Event Streams as a Shared Source of Truth



CHAPTER 10

Lean Data

Lean data is a simple idea: rather than collecting and curating large datasets,
applications carefully select small, lean ones—just the data they need at a point in
time—which are pushed from a central event store into caches, or stores they
control. The resulting lightweight views are propped up by operational processes
that make rederiving those views practical.

If Messaging Remembers, Databases Don’t Have To
One interesting consequence of using event streams as a source of truth (see
Chapter 9) is that any data you extract from the log doesn’t need to be stored
reliably. If it is lost you can always go back for more. So if the messaging layer
remembers, downstream databases don’t have to (Figure 10-1). This means you
can, if you choose, regenerate a database or event-sourced view completely from
the log. This might seem a bit strange. Why might you want to do that?

In the context of traditional messaging, ETL (extract, transform, load) pipelines,
and the like, the messaging layer is ephemeral, and users write all messages to a
database once the messages have been read. After all, they may never see them
again. There are a few problems that result from this. Architectures become com‐
parably heavyweight, with a large number of applications and services retaining
copies of a large proportion of the company’s data. At a macro level, as time
passes, all these copies tend to diverge from one another and data quality issues
start to creep in.

Data quality issues are common and often worse than people suspect. They arise
for a great many reasons. One of these is linked to our use of databases as long-
lived resources that are tweaked and tuned over time, leading to inadvertently
introduced errors. A database is essentially a file, and that file will be as old as the
system it lives in. It will have been copied from environment to environment,

91

http://bit.ly/2pKJFSy


and the data in the database will have been subject to many operational fixes over
its lifetime. So it is unsurprising that errors and inaccuracies creep in.

In stream processing, files aren’t copied around in this way. If a stream processor
creates a view, then does a release that changes the shape of that view, it typically
throws the original view away, resets to offset 0, and derives a new one from the
log.

Looking to other areas of our industry—DevOps and friends—we see similar
patterns. There was a time when system administrators would individually
tweak, tune, and mutate the computers they managed. Those computers would
end up being subtly different from one another, and when things went wrong it
was often hard to work out why.

Today, issues like these have been largely solved within as-a-service cultures that
favor immutability through infrastructure as code. This approach comes with
some clear benefits: deployments become deterministic, builds are identical, and
rebuilds are easy. Suddenly ops engineers transform into happy people empow‐
ered by the predictability of the infrastructure they wield, and comforted by the
certainty that their software will do exactly what it did in test.

Streaming encourages a similar approach, but for data. Event-sourced views are
kept lean and can be rederived from the log in a deterministic way. The view
could be a cache, a Kafka Streams state store, or a full-blown database. But for
this to work, we need to deal with a problem. Loading data can be quite slow. In
the next section we look at ways to keep this manageable.

Figure 10-1. If the messaging system can store data, then the views or databases it
feeds don’t have to

Take Only the Data You Need, Nothing More
If datasets are stored in Kafka, when you pull data into your service you can pick
out just the pieces you need. This minimizes the size of the resulting views and

92 | Chapter 10: Lean Data

https://en.wikipedia.org/wiki/Infrastructure_as_Code
https://thght.works/2GxyNls
https://thght.works/2GxyNls


1 See http://bit.ly/2GaCRZO and http://bit.ly/2IUPHJa.

allows them to be reshaped so that they are read-optimized. This is analogous to
the way materialized views are used in relational databases to optimize for reads
except, unlike in a relational database, writes and reads are decoupled. (See
“Materialized Views” on page 62 in Chapter 7.)

The inventory service, discussed in Chapter 15, makes a good example. It reads
inventory messages that include lots of information about the various products
stored in the warehouse. When the service reads each message it throws away the
vast majority of the document, stripping it back to just two fields: the product ID
and the number of items in stock.

Reducing the breadth of the view keeps the dataset small and loosely coupled. By
keeping the dataset small you can store more rows in the available memory or
disk, and performance will typically improve as a result. Coupling is reduced too,
since should the schema change, it is less likely that the service will store affected
fields.

If messaging remembers, derived views can be refined to contain only
the data that is absolutely necessary. You can always go back for more.

The approach is simple to implement in either the Kafka’s Streams DSL or
KSQL, or by using the Connect API’s single message transforms feature.

Rebuilding Event-Sourced Views
The obvious drawback of lean data is that, should you need more data, you need
to go back to the log. The cleanest way to do this is to drop the view and rebuild
it from scratch. If you’re using an in-memory data structure, this will happen by
default, but if you’re using Kafka Streams or a database, there are other factors to
consider.

Kafka Streams
If you create event-sourced views with Kafka Streams, view regeneration is par
for the course. Views are either tables, which are a direct materialization of a
Kafka topic, or state stores, which are populated with the result of some declara‐
tive transformation, defined in JVM code or KSQL. Both of these are automati‐
cally rebuilt if the disk within the service is lost (or removed) or if the Streams
Reset tool is invoked.1 We discussed how Kafka Streams manages statefulness in

Rebuilding Event-Sourced Views | 93

http://bit.ly/2GaCRZO
http://bit.ly/2IUPHJa
http://bit.ly/2DTc8uJ


2 As a yardstick, RocksDB (which Kafka Streams uses) will bulk-load ~10M 500 KB objects per minute

(roughly GbE speed). Badger will do ~4M × 1K objects a minute per SSD. Postgres will bulk-load ~1M

rows per minute.

more detail in the section “The Practicalities of Being Stateful” on page 52 in
Chapter 6.

Databases and Caches
In today’s world there are many different types of databases with a wide range of
performance tradeoffs. While regenerating a 50 TB Oracle database from scratch
would likely be impractical, regenerating the event-sourced views used in busi‐
ness services is often quite workable with careful technology choice.

Because worst-case regeneration time is the limiting factor, it helps to pick a
write-optimized database or cache. There are a great many options, but sensible
choices include:

• An in-memory database/cache like Redis, MemSQL, or Hazelcast

• A memory-optimized database like Couchbase or one that lets you disable
journaling like MongoDB

• A write/disk optimized, log-structured database like Cassandra or RocksDB

Handling the Impracticalities of Data Movement
Rebuilding an event-sourced view may still be a relatively long-winded process
(minutes or even hours!2). Because of this lead time, when releasing new soft‐
ware, developers typically regenerate views in advance (or in parallel), with the
switch from old view to new view happening when the view is fully caught up.
This is essentially the same approach taken by stateful stream processing applica‐
tions that use Kafka Streams.

The pattern works well for simple services that need small- to medium-sized
datasets, say, to drive rules engines. Working with larger datasets means slower
load times. If you need to rebuild terabyte-sized datasets in a single instance of a
highly indexed, disk-resident database, this load time could well be prohibitively
long. But in many common cases, memory-based solutions that have fast write
times, or horizontal scaling, will keep ingestion fast.

Automation and Schema Migration
Operators typically lose trust in tools that are not regularly used. This is even
more true when those scripts operate on data (database rollback scripts are noto‐

94 | Chapter 10: Lean Data

http://bit.ly/2IT234B
https://open.dgraph.io/post/badger/
http://bit.ly/2DTdd5L


3 We assume the datasets have been migrated forward using a technique like dual-schema upgrade win‐

dow, discussed in “Handling Schema Change and Breaking Backward Compatibility” on page 124 in

Chapter 13.

rious). So when you move from environment to environment, as part of your
development workflow, it’s often best to recreate views directly from the log
rather than copying database files from environment to environment as you
might in a traditional database workflow (Figure 10-2).

Figure 10-2. Data is replicated to a UAT environment where views are regenerated
from source

A good example of this is when schemas change. If you have used traditional
messaging approaches before to integrate data from one system into another, you
may have encountered a time when the message schema changed in a non-
backward-compatible way. For example, if you were importing customer infor‐
mation from a messaging system into a database when the customer message
schema undergoes a breaking change, you would typically craft a database script
to migrate the data forward, then subscribe to the new topic of messages.

If using Kafka to hold datasets in full,3 instead of performing a schema migration,
you can simply drop and regenerate the view.

The Data Divergence Problem
In practice, all large companies start to have problems with data quality as they
grow. This is actually a surprisingly deep and complex subject, with the issues
that result being painstaking, laborious, and expensive to fix.

The roots of these issues come from a variety of places. Consider a typical busi‐
ness application that loads data from several other systems and stores that data in
a database. There is a data model used on the wire (e.g., JSON), an internal

Automation and Schema Migration | 95



domain model (e.g., an object model), a data model in the database (e.g., DDL),
and finally various schemas for any outbound communication. Code needs to be
written for each of these translations, and this code needs to be evolved as the
various schemas change. These layers, and the understanding required for each
one, introduce opportunities for misinterpretation.

Semantic issues are even trickier to address, often arising where teams, depart‐
ments, or companies meet. Consider two companies going through a merger.
There will be a host of equivalent datasets that were modeled differently by each
side. You might think of this as a simple transformation problem, but typically
there are far deeper semantic conflicts: Is a supplier a customer? Is a contractor
an employee? This opens up more opportunity for misinterpretation.

So as data is moved from application to application and from service to service,
these interactions behave a bit like a game of telephone (a.k.a. Chinese whispers):
everything starts well, but as time passes the original message gets misinterpreted
and transforms into something quite different.

Some of the resulting issues can be serious: a bank whose Risk and Finance
departments disagree on the bank’s position, or a retailer—with a particularly
protracted workflow—taking a week to answer customer questions. All large
companies have stories like these of one form or other. So this isn’t a problem
you typically face building a small web application, but it’s a problem faced by
many larger, more mature architectures.

There are tried-and-tested methods for addressing these concerns. Some compa‐
nies create reconciliation systems that can turn into small cottage industries of
their own. In fact, there is a whole industry dedicated to combating this problem
—master data management—along with a whole suite of tools for data wrangling
such issues toward a shared common ground.

Streaming platforms help address these problems in a slightly different way.
First, they form a kind of central nervous system that connects all applications to
a single shared source of truth, reducing the telephone/Chinese whispers effect.
Secondly, because data is retained immutably in the log, it’s easier to track down
when an error was introduced, and it’s easier to apply fixes with the original data
on hand. So while we will always make mistakes and misinterpretations, techni‐
ques like event streams as a source of truth, Command Sourcing, and lean data
allow individual teams to develop the operational maturity needed to avoid mis‐
takes in the first place, or repair the effects of them once they happen.

Summary
So when it comes to data, we should be unequivocal about the shared facts of our
system. They are the very essence of our business, after all. Lean practices
encourage us to stay close to these shared facts, a process where we manufacture

96 | Chapter 10: Lean Data

http://bit.ly/2GsXQpN


views that are specifically optimized to the problem space at hand. This keeps
them lightweight and easier to regenerate, leveraging a similar mindset to that
developed in Command Sourcing and Event Sourcing, which we discussed in
Chapter 7. So while these facts may be evolved over time, applied in different
ways, or recast to different contexts, they will always tie back to a single source of
truth.

Summary | 97





PART IV

Consistency, Concurrency, and
Evolution

Trust is built with consistency.

—Lincoln Chafee





1 For a full treatment, see Martin Kleppmann’s encyclopedic Designing Data-Intensive Applications

(Sebastopol, CA: O’Reilly, 2017).

2 The various consistency models really reflect optimizations on the concept of in-order execution against

a single copy of data. These optimizations are necessary in practice, and most users would prefer to

trade a slightly weaker guarantee for the better performance (or availability) characteristics that typically

come with them. So implementers come up with different ways to slacken the simple “in-order execu‐

tion” guarantee. These various optimizations lead to different consistency models, and because there are

many dimensions to optimize, particularly in distributed systems, there are many resulting models.

When we discuss “Scaling Concurrent Operations in Streaming Systems” on page 142 in Chapter 15, we’ll

see how streaming systems achieve strong guarantees by partitioning relevant data into different stream

threads, then wrapping those operations in a transaction, which ensures that, for that operation, we

have in-order execution on a single copy of data (i.e., a strong consistency model).

CHAPTER 11

Consistency and Concurrency in Event-
Driven Systems

The term consistency is quite overused in our industry, with several different
meanings applied in a range of contexts. Consistency in CAP theorem differs
from consistency in ACID transactions, and there is a whole spectrum of subtly
different guarantees, including strong consistency and eventual consistency,
among others. The lack of consistent terminology around this word may seem a
little ironic, but it is really a reflection of the complexity of a subject that goes
way beyond the scope of this book.1

But despite these many subtleties, most people have an intuitive notion of what
consistency is, one often formed from writing single-threaded programs2 or mak‐
ing use of a database. This typically equates to some general notions about the
transactional guarantees a database provides. When you write a record, it stays
written. When you read a record, you read the most recently written value. If you
perform multiple operations in a transaction, they all become visible at once, and
you don’t need to be concerned with what other users may be doing at the same

101

http://bit.ly/2DWAtzQ
https://en.wikipedia.org/wiki/ACID
http://bit.ly/2GjLOf2
http://bit.ly/2pJkQre


time. We might call this idea intuitive consistency (which is closest in technical
terms to the famous ACID properties).

A common approach to building business systems is to take this intuitive notion
and apply it directly. If you build traditional three-tier applications (i.e., client,
server, and database), this is often what you would do. The database manages
concurrent changes, isolated from other users, and everyone observes exactly the
same view at any one point in time. But groups of services generally don’t have
such strong guarantees. A set of microservices might call one another synchro‐
nously, but as data moves from service to service it will often become visible to
users at different times, unless all services coordinate around a single database
and force the use of a single global consistency model.

But in a world where applications are distributed (across geographies, devices,
etc.), it isn’t always desirable to have a single, global consistency model. If you
create data on a mobile device, it can only be consistent with data on a backend
server if the two are connected. When disconnected, they will be, by definition,
inconsistent (at least in that moment) and will synchronize at some later point,
eventually becoming consistent. But designing systems that handle periods of
inconsistency is important. For a mobile device, being able to function offline is a
desirable feature, as is resynchronizing with the backend server when it recon‐
nects, converging to consistency as it does so. But the usefulness of this mode of
operation depends on the specific work that needs to be done. A mobile shop‐
ping application might let you select your weekly groceries while you’re offline,
but it can’t work out whether those items will be available, or let you physically
buy anything until you come back online again. So these are use cases where
global strong consistency is undesirable.

Business systems often don’t need to work offline in this way, but there are still
benefits to avoiding global strong consistency and distributed transactions: they
are difficult and expensive to scale, don’t work well across geographies, and are
often relatively slow. In fact, experience with distributed transactions that span
different systems, using techniques like XA, led the majority of implementers to
design around the need for such expensive coordination points.

But on the other hand, business systems typically want strong consistency to
reduce the potential for errors, which is why there are vocal proponents who
consider stronger safety properties valuable. There is also an argument for want‐
ing a bit of both worlds. This middle ground is where event-driven systems sit,
often with some form of eventual consistency.

Eventual Consistency
The previous section refers to an intuitive notion of consistency: the idea that
business operations execute sequentially on a single copy of data. It’s quite easy

102 | Chapter 11: Consistency and Concurrency in Event-Driven Systems

http://bit.ly/2Gr1SiC
https://en.wikipedia.org/wiki/X/Open_XA
http://activemq.apache.org/should-i-use-xa.html
http://bit.ly/2pG2Vl6
http://bit.ly/2pG2Vl6


to build a system that has this property. Services call one another through RPCs,
just like methods in a single-threaded program: a set of sequential operations.
Data is passed by reference, using an ID. Each service looks up the data it needs
in the database. When it needs to change it, it changes it in the database. Such a
system might look something like Figure 11-1.

Figure 11-1. A set of services that notify one another and share data via a database

This approach provides a very intuitive model as everything progresses sequen‐
tially, but as services scale out and more services are added, it can get hard to
scale and operate systems that follow this approach.

Event-driven systems aren’t typically built in this way. Instead, they leverage
asynchronous broadcast, deliberately removing the need for global state and
avoiding synchronous execution. (We went through the issues with global shared
state in “What Happens to Systems as They Evolve?” on page 80 in Chapter 8.)
Such systems are often referred to as being “eventually consistent.”

There are two consequences of eventual consistency in this context:

Timeliness
If two services process the same event stream, they will process them at dif‐
ferent rates, so one might lag behind the other. If a business operation con‐
sults both services for any reason, this could lead to an inconsistency.

Collisions
If different services make changes to the same entity in the same event
stream, if that data is later coalesced—say in a database—some changes
might be lost.

Let’s dig into these with an example that continues our theme of online retail sys‐
tems. In Figure 11-2 an order is accepted in the orders service (1). This is picked

Eventual Consistency | 103



up by the validation service, where it is validated (2). Sales tax is added (3). An
email is sent (4). The updated order goes back to the orders service (5), where it
can be queried via the orders view (this is an implementation of CQRS, as we dis‐
cussed in Chapter 7). After being sent a confirmation email (6), the user can click
through to the order (7).

Figure 11-2. An event-driven system connected via a log

Timeliness
Consider the email service (4) and orders view (5). Both subscribe to the same
event stream (Validated Orders) and process them concurrently. Executing con‐
currently means one will lag slightly behind the other. Of course, if we stopped
writes to the system, then both the orders view and the email service would even‐
tually converge on the same state, but in normal operation they will be at slightly
different positions in the event stream. So they lack timeliness with respect to one
another. This could cause an issue for a user, as there is an indirect connection
between the email service and the orders service. If the user clicks the link in the
confirmation email, but the view in the orders service is lagging, the link would
either fail or return an incorrect state (7).

So a lack of timeliness (i.e., lag) can cause problems if services are linked in some
way, but in larger ecosystems it is beneficial for the services to be decoupled, as it
allows them to do their work concurrently and in isolation, and the issues of
timeliness can usually be managed (this relates closely to the discussion around
CQRS in Chapter 7).

But what if this behavior is unacceptable, as this email example demonstrates?
Well, we can always add serial execution back in. The call to the orders service
might block until the view is updated (this is the approach taken in the worked

104 | Chapter 11: Consistency and Concurrency in Event-Driven Systems



example in Chapter 15). Alternatively, we might have the orders service raise a
View Updated event, used to trigger the email service after the view has been
updated. Both of these synthesize serial execution where it is necessary.

Collisions and Merging
Collisions occur if two services update the same entity at the same time. If we
design the system to execute serially, this won’t happen, but if we allow concur‐
rent execution it can.

Consider the validation service and tax service in Figure 11-2. To make them run
serially, we might force the tax service to execute first (by programming the ser‐
vice to react to Order Requested events), then force the validation service to exe‐
cute next (by programming the service to react to events that have had sales tax
added). This linearizes execution for each order and means that the final event
will have all the information in (i.e., it is both validated and has sales tax added).
Of course, making events run serially in this way increases the end-to-end
latency.

Alternatively, we can let the validation service and the tax service execute con‐
currently, but we’d end up with two events with important information in each:
one validated order and one order with sales tax added. This means that, to get
the correct order, with both validation and sales tax applied, we would have to
merge these two messages. (So, in this case, the merge would have to happen in
both the email service and in the orders view.)

In some situations this ability to make changes to the same entity in different
processes at the same time, and merge them later, can be extremely powerful
(e.g., an online whiteboarding tool). But in others it can be error-prone. Typi‐
cally, when building business systems, particularly ones involving money and the
like, we tend to err on the side of caution. There is a formal technique for merg‐
ing data in this way that has guaranteed integrity; it is called a conflict-free repli‐
cated data type, or CRDT. CRDTs essentially restrict what operations you can
perform to ensure that, when data is changed and later merged, you don’t lose
information. The downside is that the dialect is relatively limited.

A good compromise for large business systems is to keep the lack of timeliness
(which allows us to have lots of replicas of the same state, available read-only)
but remove the opportunity for collisions altogether (by disallowing concurrent
mutations). We do this by allocating a single writer to each type of data (topic) or
alternatively to each state transition. We’ll talk about this next.

The Single Writer Principle
A useful way to generify these ideas is to isolate consistency concerns into own‐
ing services using the single writer principle. Martin Thompson used this term in

The Single Writer Principle | 105

http://bit.ly/2umG42H
http://bit.ly/2umG42H
http://bit.ly/2DWbhcs


3 https://dspace.mit.edu/handle/1721.1/6952 and https://en.wikipedia.org/wiki/Actor_model.

4 See http://bit.ly/deds-end-of-an-era and http://bit.ly/deds-volt.

5 See https://thght.works/2IUS1zS and https://thght.works/2GdFYMq.

response to the wide-scale use of locks in concurrent environments, and the sub‐
sequent efficiencies that we can often gain by consolidating writes to a single
thread. The core idea closely relates to the Actor model,3 several ideas in database
research,4 and anecdotally to system design. From a services perspective, it also
marries with the idea that services should have a single responsibility.

At its heart it’s a simple concept: responsibility for propagating events of a specific
type is assigned to a single service—a single writer. So the inventory service owns
how the stock inventory progresses over time, the orders service owns the pro‐
gression of orders, and so on.

Conflating writes into a single service makes it easier to manage consistency effi‐
ciently. But this principle has worth that goes beyond correctness or concurrency
properties. For example:

• It allows versioning (e.g., applying a version number) and consistency checks
(e.g., checking a version number; see “Identity and Concurrency Control” on
page 108) to be applied in a single place.

• It isolates the logic for evolving each business entity, in time, to a single ser‐
vice, making it easier to reason about and to change (for example, rolling out
a schema change, as discussed in “Handling Schema Change and Breaking
Backward Compatibility” on page 124 in Chapter 13).

• It dedicates ownership of a dataset to a single team, allowing that team to
specialize. One antipattern observed in industry, when Enterprise Messaging
or an Enterprise Service Bus was applied, was that centralized schemas and
business logic could become a barrier to progress.5 The single writer princi‐
ple encourages service teams with clearly defined ownership of shared data‐
sets, putting focus on data on the outside as well as allocating clear
responsibility for it. This becomes important in domains that have complex
business rules associated with different types of data. So, for example, in
finance, where products require rich domain knowledge to model and
evolve, isolating responsibility for data evolution to a single service and team
is often considered an advantage.

When the single writer principle is applied in conjunction with Event Collabora‐
tion (discussed in Chapter 5), each writer evolves part of a single business work‐
flow through a set of successive events. So in Figure 11-3, which shows a larger
online retail workflow, several services collaborate around the order process as
an order moves from inception, through payment processing and shipping, to

106 | Chapter 11: Consistency and Concurrency in Event-Driven Systems

https://dspace.mit.edu/handle/1721.1/6952
https://en.wikipedia.org/wiki/Actor_model
http://bit.ly/deds-end-of-an-era
http://bit.ly/deds-volt
https://thght.works/2IUS1zS
https://thght.works/2GdFYMq
https://en.wikipedia.org/wiki/Single_responsibility_principle
http://bit.ly/2DWuVFm


completion. There are separate topics for order, payment, and shipment. The
order, payment, and shipping services take control of all state changes made in
their respective topics.

Figure 11-3. Here each circle represents an event; the color of the circle designates
the topic it is in; a workflow evolves from Order Requested through to Order Com‐
pleted; on the way, four services perform different state transitions in topics they
are “single writer” to; the overall workflow spans them all

So, instead of sharing a global consistency model (e.g., via a database), we use the
single writer principle to create local points of consistency that are connected via
the event stream. There are a couple of variants on this pattern, which we will
discuss in the next two sections.

As we’ll see in “Scaling Concurrent Operations in Streaming Systems” on page 142
in Chapter 15, single writers can be scaled out linearly through partitioning, if we
use Kafka’s Streams API.

Command Topic
A common variant on this pattern uses two topics per entity, often named Com‐
mand and Entity. This is logically identical to the base pattern, but the Com‐
mand topic can be written to by any process and is used only for the initiating
event. The Entity topic can be written to only by the owning service: the single
writer. Splitting these two allows administrators to enforce the single writer prin‐
ciple strictly by configuring topic permissions. So, for example, we might break
order events into two topics, shown in Table 11-1.

The Single Writer Principle | 107



Table 11-1. A Command Topic is used to separate the initial command
from subsequent events

Topic OrderCommandTopic OrdersTopic

Event types OrderRequest(ed) OrderValidated, OrderCompleted

Writer Any service Orders service

Single Writer Per Transition
A less stringent variant of the single writer principle involves services owning
individual transitions rather than all transitions in a topic (see Table 11-2). So,
for example, the payment service might not use a Payment topic at all. It might
simply add extra payment information to the existing order message (so there
would be a Payment section of the Order schema). The payment service then
owns just that one transition and the orders service owns the others.

Table 11-2. The order service and payment services both write to the
orders topic, but each service is responsible for a different state transition

Service Orders service Payment service

Topic OrdersTopic OrdersTopic

Writable transition OrderRequested->OrderValidated

PaymentReceived->OrderConfirmed

OrderValidated->PaymentReceived

Atomicity with Transactions
Kafka provides a transactions feature with two guarantees:

• Messages sent to different topics, within a transaction, will either all be writ‐
ten or none at all.

• Messages sent to a single topic, in a transaction, will never be subject to
duplicates, even on failure.

But transactions provide a very interesting and powerful feature to Kafka
Streams: they join writes to state stores and writes to output topics together,
atomically. Kafka’s transactions are covered in full in Chapter 12.

Identity and Concurrency Control
The notion of identity is hugely important in business systems, yet it is often
overlooked. For example, to detect duplicates, messages need to be uniquely
identified, as we discussed in Chapter 12. Identity is also important for handling
the potential for updates to be made at the same time, by implementing optimis‐
tic concurrency control.

108 | Chapter 11: Consistency and Concurrency in Event-Driven Systems

http://bit.ly/2Gbdkzt
http://bit.ly/2Gbdkzt


The basic premise of identity is that it should correlate with the real world: an

order has an OrderId, a payment has a PaymentId, and so on. If that entity is log‐

ically mutable (for example, an order that has several states, Created, Validated,
etc., or a customer whose email address might be updated), then it should have a
version identifier also:

"Customer"{

          "CustomerId": "1234"

          "Source": "ConfluentWebPortal"

          "Version": "1"

          ...

}

The version identifier can then be used to handle concurrency. As an example
(see Figure 11-4), say a user named Bob opens his customer details in one
browser window (reading version 1), then opens the same page in a second
browser window (also version 1). He then changes his address and submits in the
second window, so the server increments the version to 2. If Bob goes back to the
first window and changes his phone number, the update should be rejected due
to a version comparison check on the server.

Figure 11-4. An example of optimistic concurrency control. The write fails at T2
because the data in the browser is now stale and the server performs a version
number comparison before permitting the write.

The optimistic concurrency control technique can be implemented in synchro‐
nous or asynchronous systems equivalently.

Identity and Concurrency Control | 109



Limitations
The single writer principle and other related patterns discussed in this chapter
are exactly that: patterns, which are useful in common cases, but don’t provide
general solutions. There will always be exceptions, particularly in environments
where the implementation is constrained, for example, by legacy systems.

Summary
In this chapter we looked at why global consistency can be problematic and why
eventual consistency can be useful. We adapted eventual consistency with the
single writer principle, keeping its lack of timeliness but avoiding collisions.
Finally, we looked at implementing identity and concurrency control in event-
driven systems.

110 | Chapter 11: Consistency and Concurrency in Event-Driven Systems



CHAPTER 12

Transactions, but Not as We Know Them

Kafka ships with built-in transactions, in much the same way that most relational
databases do. The implementation is quite different, as we will see, but the goal is
similar: to ensure that our programs create predictable and repeatable results,
even when things fail.

Transactions do three important things in a services context:

• They remove duplicates, which cause many streaming operations to get
incorrect results (even something as simple as a count).

• They allow groups of messages to be sent, atomically, to different topics—for
example, Order Confirmed and Decrease Stock Level, which would leave the
system in an inconsistent state if only one of the two succeeded.

• Because Kafka Streams uses state stores, and state stores are backed by a
Kafka topic, when we save data to the state store, then send a message to
another service, we can wrap the whole thing in a transaction. This property
turns out to be particularly useful.

In this chapter we delve into transactions, looking at the problems they solve,
how we should make use of them, and how they actually work under the covers.

The Duplicates Problem
Any service-based architecture is itself a distributed system, a field renowned for
being difficult, particularly when things go wrong. Thought experiments like the
Two Generals’ Problem and proofs like FLP highlight these inherent difficulties.
But in practice the problem seems less complex. If you make a call to a service
and it’s not running for whatever reason, you retry, and eventually the call will
complete.

111

http://bit.ly/2I5qcDW
http://bit.ly/2DWvmzq


One issue with this is that retries can result in duplicate processing, and this can
cause very real problems. Taking a payment twice from someone’s account will
lead to an incorrect balance (Figure 12-1). Adding duplicate tweets to a user’s
feed will lead to a poor user experience. The list goes on.

Figure 12-1. The UI makes a call to the payment service, which calls an external
payment provider; the payment service fails before returning to the UI; as the UI
did not get a response, it eventually times out and retries the call; the user’s account
could be debited twice

In reality we handle these duplicate issues automatically in the majority of sys‐
tems we build, as many systems simply push data to a database, which will auto‐
matically deduplicate based on the primary key. Such processes are naturally
idempotent. So if a customer updates their address and we are saving that data in
a database, we don’t care if we create duplicates, as the worst-case scenario is that
the database table that holds customer addresses gets updated twice, which is no
big deal. This applies to the payment example also, so long as each one has a
unique ID. As long as deduplication happens at the end of each use case, then, it
doesn’t matter how many duplicate calls are made in between. This is an old idea,
dating back to the early days of TCP (Transmission Control Protocol). It’s called
the end-to-end principle.

The rub is this—for this natural deduplication to work, every network call needs
to:

• Have an appropriate key that defines its identity.

• Be deduplicated in a database that holds an extensive history of these keys.
Or, duplicates have to be constantly considered in the business logic we
write, which increases the cognitive overhead of this task.

Event-driven systems attempt to move away from this database-centric style of
processing, instead executing business logic, communicating the results of that
processing, and moving on.

The result of this is that most event-driven systems end up deduplicating on
every message received, before it is processed, and every message sent out has a

112 | Chapter 12: Transactions, but Not as We Know Them

https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/End-to-end_principle


carefully chosen ID so it can be deduplicated downstream. This is at best a bit of
a hassle. At worst it’s a breeding ground for errors.

But if you think about it, this is no more an application layer concern than order‐
ing of messages, arranging redelivery, or any of the other benefits that come with
TCP. We choose TCP over UDP (User Datagram Protocol) because we want to
program at a higher level of abstraction, where delivery, ordering, and so on are
handled for us. So we’re left wondering why these issues of duplication have
leaked up into the application layer. Isn’t this something our infrastructure
should solve for us?

Transactions in Kafka allow the creation of long chains of services, where the
processing of each step in the chain is wrapped in exactly-once guarantees. This
reduces duplicates, which means services are easier to program and, as we’ll see
later in this chapter, transactions let us tie streams and state together when we
implement storage either through Kafka Streams state stores or using the Event
Sourcing design pattern. All this happens automatically if you are using the
Kafka Streams API.

The bad news is that this isn’t some magic fairy dust that sprinkles exactly-
onceness over your entire system. Your system will involve many different parts,
some based on Kafka, some based on other technologies, the latter of which
won’t be covered by the guarantee.

But it does sprinkle exactly-onceness over the Kafka bits, the interactions
between your services (Figure 12-2). This frees services from the need to dedupli‐
cate data coming in and pick appropriate keys for data going out. So we can hap‐
pily chain services together, inside an event-driven workflow, without these
additional concerns. This turns out to be quite empowering.

The Duplicates Problem | 113



Figure 12-2. Kafka’s transactions provide guarantees for communication per‐
formed through Kafka, but not beyond it

Using the Transactions API to Remove Duplicates
As a simple example, imagine we have an account validation service. It takes
deposits in, validates them, and then sends a new message back to Kafka marking
the deposit as validated.

Kafka records the progress that each consumer makes by storing an offset in a

special topic, called consumer_offsets. So to validate each deposit exactly once,
we need to perform the final two actions—(a) send the “Deposit Validated” mes‐

sage back to Kafka, and (b) commit the appropriate offset to the consumer_off

sets topic—as a single atomic unit (Figure 12-3). The code for this would look
something like the following:

//Read and validate deposits

validatedDeposits = validate(consumer.poll(0))

//Send validated deposits & commit offsets atomically

producer.beginTransaction()

producer.send(validatedDeposits)

producer.sendOffsetsToTransaction(offsets(consumer))

producer.endTransaction()

114 | Chapter 12: Transactions, but Not as We Know Them



Figure 12-3. A single message operation is in fact two operations: a send and an
acknowledge, which must be performed atomically to avoid duplication

If you are using the Kafka Streams API, no extra code is required. You simply
enable the feature.

Exactly Once Is Both Idempotence and Atomic Commit
As Kafka is a broker, there are actually two opportunities for duplication. Send‐
ing a message to Kafka might fail before an acknowledgment is sent back to the
client, with a subsequent retry potentially resulting in a duplicate message. On
the other side, the process reading from Kafka might fail before offsets are com‐
mitted, meaning that the same message might be read a second time when the
process restarts (Figure 12-4).

Figure 12-4. Message brokers provide two opportunities for failure—one when
sending to the broker, and one when reading from it

Exactly Once Is Both Idempotence and Atomic Commit | 115



1 In practice a clever optimization is used to move buffering from the consumer to the broker, reducing

memory pressure. Begin markers are also optimized out.

So idempotence is required in the broker to ensure duplicates cannot be created
in the log. Idempotence, in this context, is just deduplication. Each producer is
given an identifier, and each message is given a sequence number. The combina‐
tion of the two uniquely defines each batch of messages sent. The broker uses this
unique sequence number to work out if a message is already in the log and dis‐
cards it if it is. This is a significantly more efficient approach than storing every
key you’ve ever seen in a database.

On the read side, we might simply deduplicate (e.g., in a database). But Kafka’s
transactions actually provide a broader guarantee, more akin to transactions in a
database, tying all messages sent together in a single atomic commit. So idempo‐
tence is built into the broker, and then an atomic commit is layered on top.

How Kafka’s Transactions Work Under the Covers
Looking at the code example in the previous section, you might notice that
Kafka’s transactions implementation looks a lot like transactions in a database.
You start a transaction, write messages to Kafka, then commit or abort. But the
whole model is actually pretty different, because of course it’s designed for
streaming.

One key difference is the use of marker messages that make their way through
the various streams. Marker messages are an idea first introduced by Chandy and
Lamport almost 30 years ago in a method called the Snapshot Marker Model.
Kafka’s transactions are an adaptation of this idea, albeit with a subtly different
goal.

While this approach to transactional messaging is complex to implement, con‐
ceptually it’s quite easy to understand (Figure 12-5). Take our previous example,
where two messages were written to two different topics atomically. One message

goes to the Deposits topic, the other to the committed_offsets topic.

Begin markers are sent down both.1 We then send our messages. Finally, when
we’re done, we flush each topic with a Commit (or Abort) marker, which con‐
cludes the transaction.

Now the aim of a transaction is to ensure only “committed” data is seen by
downstream programs. To make this work, when a consumer sees a Begin
marker it starts buffering internally. Messages are held up until the Commit
marker arrives. Then, and only then, are the messages presented to the consum‐
ing program. This buffering ensures that consumers only ever read committed
data.

116 | Chapter 12: Transactions, but Not as We Know Them

http://bit.ly/2umAT2Q


Figure 12-5. Conceptual model of transactions in Kafka

To ensure each transaction is atomic, sending the Commit markers involves the
use of a transaction coordinator. There will be many of these spread throughout
the cluster, so there is no single point of failure, but each transaction uses just
one.

The transaction coordinator is the ultimate arbiter that marks a transaction com‐
mitted atomically, and maintains a transaction log to back this up (this step
implements two-phase commit).

For those that worry about performance, there is of course an overhead that
comes with this feature, and if you were required to commit after every message,
the performance degradation would be noticeable. But in practice there is no
need for that, as the overhead is dispersed among whole batches of messages,
allowing us to balance transactional overhead with worst-case latency. For exam‐
ple, batches that commit every 100 ms, with a 1 KB message size, have a 3% over‐
head when compared to in-order, at-least-once delivery. You can test this out
yourself with the performance test scripts that ship with Kafka.

In reality, there are many subtle details to this implementation, particularly
around recovering from failure, fencing zombie processes, and correctly allocat‐
ing IDs, but what we have covered here is enough to provide a high-level under‐
standing of how this feature works. For a comprehensive explanation of how
transactions work, see the post “Transactions in Apache Kafka” by Apurva
Mehta and Jason Gustafson.

How Kafka’s Transactions Work Under the Covers | 117

http://bit.ly/2uiu969
http://bit.ly/2ukywh4
http://bit.ly/2ukywh4
https://www.confluent.io/blog/transactions-apache-kafka/


Store State and Send Events Atomically
As we saw in Chapter 7, Kafka can be used to store data in the log, with the most
common means being a state store (a disk-resident hash table, held inside the
API, and backed by a Kafka topic) in Kafka Streams. As a state store gets its dura‐
bility from a Kafka topic, we can use transactions to tie writes to the state store
and writes to other output topics together. This turns out to be an extremely
powerful pattern because it mimics the tying of messaging and databases
together atomically, something that traditionally required painfully slow proto‐
cols like XA.

The database used by Kafka Streams is a state store. Because state stores
are backed by Kafka topics, transactions let us tie messages we send and
state we save in state stores together, atomically.

Imagine we extend the previous example so our validation service keeps track of
the balance as money is deposited. So if the balance is currently $50, and we
deposit $5 more, then the balance should go to $55. We record that $5 was
deposited, but we also store this current balance, $55, by writing it to a state store
(or directly to a compacted topic). See Figure 12-6.

Figure 12-6. Three messages are sent atomically: a deposit, a balance update, and
the acknowledgment

If transactions are enabled in Kafka Streams, all these operations will be wrapped
in a transaction automatically, ensuring the balance will always be atomically in
sync with deposits. You can achieve the same process with the product and con‐
sumer by wrapping the calls manually in your code, and the current account bal‐
ance can be reread on startup.

What’s powerful about this example is that it blends concepts of both messaging
and state management. We listen to events, act, and create new events, but we

118 | Chapter 12: Transactions, but Not as We Know Them

https://en.wikipedia.org/wiki/X/Open_XA
http://bit.ly/2pGoD7O


also manage state, the current balance, in Kafka—all wrapped in the same trans‐
action.

Do We Need Transactions? Can We Do All This with
Idempotence?
People have been building both event- and request-driven systems for decades,
simply by making their processes idempotent with identifiers and databases. But
implementing idempotence comes with some challenges. While defining the ID
of an order is relatively obvious, not all streams of events have such a clear con‐
cept of identity. If we had a stream of events representing the average account
balance per region per hour, we could come up with a suitable key, but you can
imagine it would be a lot more brittle and error-prone.

Also, transactions encapsulate the concept of deduplication entirely inside your
service. You don’t muddy the waters seen by other services downstream with any
duplicates you might create. This makes the contract of each service clean and
encapsulated. Idempotence, on the other hand, relies on every service that sits
downstream correctly implementing deduplication, which clearly makes their
contract more complex and error-prone.

What Can’t Transactions Do?
There are a few limitations or potential misunderstandings of transactions that
are worth noting. First, they work only in situations where both the input and the
output go through Kafka. If you are calling an external service (e.g., via HTTP),
updating a database, writing to stdout, or anything other than writing to and
from the Kafka broker, transactional guarantees won’t apply and calls can be
duplicated. So, much like using a transactional database, transactions work only
when you are using Kafka.

Also akin to accessing a database, transactions commit when messages are sent,
so once they are committed there is no way to roll them back, even if a subse‐
quent transaction downstream fails. So if the UI sends a transactional message to
the orders service and the orders service fails while sending messages of its own,
any messages the orders service sent would be rolled back, but there is no way to
roll back the transaction in the UI. If you need multiservice transactions, con‐
sider implementing sagas.

Transactions commit atomically in the broker (just like a transaction would
commit in a database), but there are no guarantees regarding when an arbitrary
consumer will read those messages. This may seem obvious, but it is sometimes a
point of confusion. Say we send a message to the Orders topic and a message to
the Payments topic, inside a transaction there is no way to know when a con‐

Do We Need Transactions? Can We Do All This with Idempotence? | 119

http://bit.ly/2veo1bW


sumer will read one or the other, or that they might read them together. But
again note that this is identical to the contract offered by a transactional data‐
base.

Finally, in the examples here we use the producer and consumer APIs to demon‐
strate how transactions work. But the Kafka’s Streams API actually requires no
extra coding whatsoever. All you do is set a configuration and exactly-once pro‐
cessing is enabled automatically.

But while there is full support for individual producers and consumers, transac‐
tions are not currently supported for consumer groups (although this will
change). If you have this requirement, use the Kafka Streams API, where con‐
sumer groups are supported in full.

Making Use of Transactions in Your Services
In Chapter 5 we described a design pattern known as Event Collaboration. In this
pattern messages move from service to service, creating a workflow. It’s initiated
with an Order Requested event and it ends with Order Complete. In between,
several different services get involved, moving the workflow forward.

Transactions are important in complex workflows like this because the end-to-
end principle is hard to apply. Without them, deduplication would need to hap‐
pen in every service. Moreover, building a reliable streaming application without
transactions turns out to be pretty tough. There are a couple of reasons for this:
(a) Streams applications make use of many intermediary topics, and deduplicat‐
ing them after each step is a burden (and would be near impossible in KSQL), (b)

the DSL provides a range of one-to-many operations (e.g., flatMap()), which are
hard to manage idempotently without the transactions API. Kafka’s transactions
feature resolves these issues, along with atomically tying stream processing with
the storing of intermediary state in state stores.

Summary
Transactions affect the way we build services in a number of specific ways:

• They take idempotence right off the table for services interconnected with
Kafka. So when we build services that follow the pattern “read, process,
(save), send,” we don’t need to worry about deduplicating inputs or con‐
structing keys for outputs.

• We no longer need to worry about ensuring there are appropriate unique
keys on the messages we send. This typically applies less to topics containing
business events, which often have good keys already. But it’s useful when
we’re managing derivative/intermediary data—for example, when we’re
remapping events, creating aggregate events, or using the Streams API.

120 | Chapter 12: Transactions, but Not as We Know Them



• Where Kafka is used for persistence, we can wrap both messages we send to
other services and state we need internally in a single transaction that will
commit or fail. This makes it easier to build simple stateful apps and services.

So, to put it simply, when you are building event-based systems, Kafka’s transac‐
tions free you from the worries of failure and retries in a distributed world—wor‐
ries that really should be a concern of the infrastructure, not of your code. This
raises the level of abstraction, making it easier to get accurate, repeatable results
from large estates of fine-grained services.

Having said all that, we should also be careful. Transactions remove just one of
the issues that come with distributed systems, but there are many more. Coarse-
grained services still have their place. But in a world where we want to be fast and
nimble, streaming platforms raise the bar, allowing us to build finer-grained
services that behave as predictably in complex chains as they would standing
alone.

Summary | 121





CHAPTER 13

Evolving Schemas and Data over Time

Schemas are the APIs used by event-driven services, so a publisher and sub‐
scriber need to agree on exactly how a message is formatted. This creates a logical
coupling between sender and receiver based on the schema they both share. In
the same way that request-driven services make use of service discovery technol‐
ogy to discover APIs, event-driven technologies need some mechanism to dis‐
cover what topics are available, and what data (i.e., schema) they provide.

There are a fair few options available for schema management: Protobuf and
JSON Schema are both popular, but most projects in the Kafka space use Avro.
For central schema management and verification, Confluent has an open source
Schema Registry that provides a central repository for Avro schemas.

Using Schemas to Manage the Evolution of Data in
Time
Schemas provide a contract that defines what a message should look like. This is
pretty intuitive. Importantly, though, most schema technologies provide a mech‐
anism for validating whether a message in a new schema is backward-compatible
with previous versions (or vice versa). This property is essential. (Don’t use Java
serialization or any non-evolvable format across services that change independ‐
ently.)

Say you added a “return code” field to the schema for an order; this would be a
backward-compatible change. Programs running with the old schema would still
be able to read messages, but they wouldn’t see the “return code” field (termed
forward compatibility). Programs with the new schema would be able to read the
whole message, with the “return code” field included (termed backward compati‐
bility).

123

https://developers.google.com/protocol-buffers/
http://json-schema.org/
https://avro.apache.org/
http://bit.ly/2GwlzFQ


Unfortunately, you can’t move or remove fields from a schema in a compatible
way, although it’s typically possible to synthesize a move with a clone. The data
will be duplicated in two places until such time as a breaking change can be
released.

This ability to evolve a schema with additive changes that don’t break old pro‐
grams is how most shared messaging models are managed over time.

The Confluent Schema Registry can be used to police this approach. The Schema
Registry provides a mapping between topics in Kafka and the schema they use
(Figure 13-1). It also enforces compatibility rules before messages are added. So
the Schema Registry will check every message sent to Kafka for Avro compatibil‐
ity, ensuring that incompatible messages will fail on publication.

Figure 13-1. Calling out to the Schema Registry to validate schema compatibility
when reading and writing orders in the orders service

Handling Schema Change and Breaking Backward
Compatibility
The pain of long schema migrations is one of the telltale criticisms of the rela‐
tional era. But the reality is that evolving schemas are a fundamental attribute of
the way data ages. The main difference between then and now is that late-bound/
schema-on-read approaches allow many incompatible data schemas to exist in
the same table, topic, or the like at the same time. This pushes the problem of
translating the format—from old to new—into the application layer, hence the
name “schema on read.”

Schema on read turns out to be useful in a couple of ways. In many cases recent
data is more valuable than older data, so programs can move forward without
migrating older data they don’t really care about. This is a useful, pragmatic solu‐
tion used broadly in practice, particularly with messaging. But schema on read

124 | Chapter 13: Evolving Schemas and Data over Time

http://bit.ly/2GwlzFQ
http://bit.ly/2pIwyS6


can also be simple to implement if the parsing code for the previous schemas
already exists in the codebase (which is often the case in practice).

However, whichever approach you take, unless you do a single holistic big-bang
release, you will end up handling the schema-evolution problem, be it by physi‐
cally migrating datasets forward or by having different application-layer rou‐
tines. Kafka is no different.

As we discussed in the previous section, most of the time backward compatibility
between schemas can be maintained through additive changes (i.e., new fields,
but not moves or deletes). But periodically schemas will need upgrading in a
non-backward-compatible way. The most common approach for this is Dual
Schema Upgrade Window, where we create two topics, orders-v1 and orders-v2,
for messages with the old and new schemas, respectively. Assuming orders are
mastered by the orders service, this gives you a few options:

• The orders service can dual-publish in both schemas at the same time, to two
topics, using Kafka’s transactions API to make the publication atomic. (This
approach doesn’t solve back-population so isn’t appropriate for topics used
for long-term storage.)

• The orders service can be repointed to write to orders-v2. A Kafka Streams
job is added to down-convert from the orders-v2 topic to the orders-v1 for
backward compatibility. (This also doesn’t solve back-population.) See
Figure 13-2.

• The orders service continues to write to orders-v1. A Kafka Streams job is
added that up-converts from orders-v1 topic to orders-v2 topic until all cli‐
ents have upgraded, at which point the orders service is repointed to orders-
v2. (This approach handles back-population.)

• The orders service can migrate its dataset internally, in its own database,
then republish the whole view into the log in the orders-v2 topic. It then
continues to write to both orders-v1 and orders-v2 using the appropriate
formats. (This approach handles back-population.)

All four approaches achieve the same goal: to give services a window in which
they can upgrade. The last two options make it easier to port historic messages
from the v1 to the v2 topics, as the Kafka Streams job will do this automatically if
it is started from offset 0. This makes it better suited to long-retention topics
such as those used in Event Sourcing use cases.

Handling Schema Change and Breaking Backward Compatibility | 125



Figure 13-2. Dual Schema Upgrade Window: the same data coexists in two topics,
with different schemas, so there is a window during which services can upgrade

Services continue in this dual-topic mode until fully migrated to the v2 topic, at
which point the v1 topic can be archived or deleted as appropriate.

As an aside, we discussed the single writer principle in Chapter 11. One of the
reasons for applying this approach is that it makes schema upgrades simpler. If
we had three different services writing orders, it would be much harder to sched‐
ule a non-backward-compatible upgrade without a conjoined release.

Collaborating over Schema Change
In the previous section we discussed how to roll out a non-backward-compatible
schema change. However, before such a process ensues, or even before we make
a minor change to a schema, there is usually some form of team-to-team collabo‐
ration that takes place to work out whether the change is appropriate. This can
take many forms. Sending an email to the affected teams, telling them what the
new schema is and when it’s going live, is pretty common, as is having a central
team that manages the process. Neither of these approaches works particularly
well in practice, though. The email method lacks structure and accountability.
The central team approach stifles progress, because you have to wait for the cen‐
tral team to make the change and then arrange some form of sign-off.

The best approach I’ve seen for this is to use GitHub. This works well because (a)
schemas are code and should be version-controlled for all the same reasons code
is, and (b) GitHub lets implementers propose a change and raise a pull request
(PR), which they can code against while they build and test their system. Other

126 | Chapter 13: Evolving Schemas and Data over Time



1 See https://www.rabbitmq.com/dlx.html and https://ibm.co/2ui3rKO.

interested parties can review, comment, and approve. Once consensus is reached,
the PR can be merged and the new schema can be rolled out. It is this process for
reliably reaching (and auditing) consensus on a change, without impeding the
progress of the implementer unduly, that makes this approach the most useful
option.

Handling Unreadable Messages
Schemas aren’t always enough to ensure downstream applications will work.
There is nothing to prevent a semantic error—for example, an unexpected char‐
acter, invalid country code, negative quantity, or even invalid bytes (say due to
corruption)—from causing a process to stall. Such errors will typically hold up
processing until the issue is fixed, which can be unacceptable in some environ‐
ments.

Traditional messaging systems often include a related concept called a dead letter
queue,1 which is used to hold messages that can’t be sent, for example, because
they cannot be routed to a destination queue. The concept doesn’t apply in the
same way to Kafka, but it is possible for consumers to not be able to read a mes‐
sage, either for semantic reasons or due to the message payload being invalid
(e.g., the CRC check failing, on read, as the message has become corrupted).

Some implementers choose to create a type of dead letter queue of their own in a
separate topic. If a consumer cannot read a message for whatever reason, it is
placed on this error queue so processing can continue. Later the error queue can
be reprocessed.

Deleting Data
When you keep datasets in the log for longer periods of time, or even indefi‐
nitely, there are times you need to delete messages, correct errors or corrupted
data, or redact sensitive sections. A good example of this is recent regulations like
General Data Protection Regulation (GDPR), which, among other things, gives
users the right to be forgotten.

The simplest way to remove messages from Kafka is to simply let them expire. By
default, Kafka will keep data for two weeks, and you can tune this to an arbitrar‐
ily large (or small) period of time. There is also an Admin API that lets you delete
messages explicitly if they are older than some specified time or offset. When
using Kafka for Event Sourcing or as a source of truth, you typically don’t need
delete. Instead, removal of a record is performed with a null value (or delete

Handling Unreadable Messages | 127

https://www.rabbitmq.com/dlx.html
https://ibm.co/2ui3rKO
https://en.wikipedia.org/wiki/Data_degradation
https://eng.uber.com/reliable-reprocessing/


marker as appropriate). This ensures the fully versioned history is held intact,
and most Connect sinks are built with delete markers in mind.

But for regulatory requirements like GDPR, adding a delete marker isn’t enough,
as all data needs to be physically removed from the system. There are a variety of
approaches to this problem. Some people favor a security-based approach such
as crypto shredding, but for most people, compacted topics are the tool of choice,
as they allow messages to be explicitly deleted or replaced via their key.

But data isn’t removed from compacted topics in the same way as in a relational
database. Instead, Kafka uses a mechanism closer to those used by Cassandra and
HBase, where records are marked for removal and then later deleted when the
compaction process runs. Deleting a message from a compacted topic is as sim‐
ple as writing a new message to the topic with the key you want to delete and a
null value. When compaction runs, the message will be deleted forever.

If the key of the topic is something other than the CustomerId, then you need
some process to map the two. For example, if you have a topic of Orders, then

you need a mapping of customer to OrderId held somewhere. Then, to “forget” a
customer, simply look up their orders and either explicitly delete them from
Kafka, or alternatively redact any customer information they contain. You might
roll this into a process of your own, or you might do it using Kafka Streams if
you are so inclined.

There is a less common case, which is worth mentioning, where the key (which
Kafka uses for ordering) is completely different from the key you want to be able

to delete by. Let’s say that you need to key your orders by ProductId. This choice
of key won’t let you delete orders for individual customers, so the simple method
just described wouldn’t work. You can still achieve this by using a key that is a

composite of the two: make the key [ProductId][CustomerId], then use a cus‐

tom partitioner in the producer that extracts the ProductId and partitions only
on that value. Then you can delete messages using the mechanism discussed ear‐

lier using the [ProductId][CustomerId] pair as the key.

Triggering Downstream Deletes
Quite often you’ll be in a pipeline where Kafka is moving data from one database
to another using Kafka connectors. In this case, you need to delete the record in
the originating database and have that propagate through Kafka to any Connect
sinks you have downstream. If you’re using CDC this will just work: the delete
will be picked up by the source connector, propagated through Kafka, and
deleted in the sinks. If you’re not using a CDC-enabled connector, you’ll need
some custom mechanism for managing deletes.

128 | Chapter 13: Evolving Schemas and Data over Time

https://en.wikipedia.org/wiki/Crypto-shredding


Segregating Public and Private Topics
When using Kafka for Event Sourcing or stream processing, in the same cluster
through which different services communicate, we typically want to segregate
private, internal topics from shared, business topics.

Some teams prefer to do this by convention, but you can apply a stricter segrega‐
tion using the authorization interface. Essentially you assign read/write permis‐
sions, for your internal topics, only to the services that own them. This can be
implemented through simple runtime validation, or alternatively fully secured
via TLS or SASL.

Summary
In this chapter we looked at a collection of somewhat disparate issues that affect
event-driven systems. We considered the problem of schema change: something
that is inevitable in the real-world. Often this can be managed simply by evolving
the schema with a format like Avro or Protobuf that supports backward compati‐
bility. At other times evolution will not be possible and the system will have to
undergo a non-backward-compatible change. The dual-schema upgrade window
is one way to handle this.

Then we briefly looked at handling unreadable messages as well as how data can
be deleted. For many users deleting data won’t be an issue–it will simply age out
of the log–but for those that keep data for longer periods this typically becomes
important.

Segregating Public and Private Topics | 129

http://bit.ly/2pIszFb




PART V

Implementing Streaming Services
with Kafka

A reactive system does not compute or perform a function, it maintains a certain
ongoing relationship with its environment.

—David Harel and Amir Pnueli, “On the Development of Reactive Systems,”
1985





CHAPTER 14

Kafka Streams and KSQL

When it comes to building event-driven services, the Kafka Streams API pro‐
vides the most complete toolset for handling a distributed, asynchronous world.
Kafka Streams is designed to perform streaming computations. We discussed a
simple example of such a use case, where we processed app open/close events
emitted from mobile phones in Chapter 2. We also touched on its stateful ele‐
ments in Chapter 6. This led us to three types of services we can build: event-
driven, streaming, and stateful streaming.

In this chapter we look more closely at this unique tool for stateful stream pro‐
cessing, along with its powerful declarative interface: KSQL.

A Simple Email Service Built with Kafka Streams and
KSQL
Kafka Streams is the core API for stream processing on the JVM (Java, Scala,
Clojure, etc.). It is based on a DSL (domain-specific language) that provides a
declaratively styled interface where streams can be joined, filtered, grouped, or
aggregated via the DSL itself. It also provides functionally styled mechanisms

(map, flatMap, transform, peek, etc.) for adding bespoke processing of messages
one at a time. Importantly, you can blend these two approaches together in the
services you build, with the declarative interface providing a high-level abstrac‐
tion for SQL-like operations and the more functional methods adding the free‐
dom to branch out into any arbitrary code you may wish to write.

But what if you’re not running on the JVM? In this case you’d use KSQL. KSQL
provides a simple, interactive SQL-like wrapper for the Kafka Streams API. It can
be run standalone, for example, via the Sidecar pattern, and called remotely. As
KSQL utilizes the Kafka Streams API under the hood, we can use it to do the
same kind of declarative slicing and dicing. We can also apply custom processing

133

http://bit.ly/2pLLK1N


either by implementing a user-defined function (UDF) directly or, more com‐
monly, by pushing the output to a Kafka topic and using a native Kafka client, in
whatever language our service is built in, to process the manipulated streams one
message at a time. Whichever approach we take, these tools let us model business
operations in an asynchronous, nonblocking, and coordination-free manner.

Let’s consider something more concrete. Imagine we have a service that sends
emails to platinum-level clients (Figure 14-1). We can break this problem into
two parts. First, we prepare by joining a stream of orders to a table of customers
and filtering for the “platinum” clients. Second, we need code to construct and
send the email itself. We would do the former in the DSL and the latter with a
per-message function:

//Join customers and orders

orders.join(customers, Tuple::new)

 //Consider confirmed orders for platinum customers

 .filter((k, tuple) → tuple.customer.level().equals(PLATINUM)

 && tuple.order.state().equals(CONFIRMED))

 //Send email for each customer/order pair

 .peek((k, tuple) → emailer.sendMail(tuple));

The code for this is available on GitHub.

Figure 14-1. An example email service that joins orders and customers, then sends
an email

We can perform the same operation using KSQL (Figure 14-2). The pattern is
the same; the event stream is dissected with a declarative statement, then pro‐
cessed one record at a time:

134 | Chapter 14: Kafka Streams and KSQL

http://bit.ly/2DW4Ruh
http://bit.ly/kafka-microservice-examples


//Create a stream of confirmed orders for platinum customers

ksql> CREATE STREAM platinum_emails AS SELECT * FROM orders

  WHERE client_level == 'PLATINUM' AND state == 'CONFIRMED';

Then we implement the emailer as a simple consumer using Kafka’s Node.js API
(though a wide number of languages are supported) with KSQL running as a
sidecar.

Figure 14-2. Executing a streaming operation as a sidecar, with the resulting
stream being processed by a Node.js client

Windows, Joins, Tables, and State Stores
Chapter 6 introduced the notion of holding whole tables inside the Kafka
Streams API, making services stateful. Here we look a little more closely at how
both streams and tables are implemented, along with some of the other core fea‐
tures.

Let’s revisit the email service example once again, where an email is sent to con‐
firm payment of a new order, as pictured in Figure 14-3. We apply a stream-
stream join, which waits for corresponding Order and Payment events to both be
present in the email service before triggering the email code. The join behaves
much like a logical AND.

Windows, Joins, Tables, and State Stores | 135

http://bit.ly/2sKvTjx


Figure 14-3. A stream-stream join between orders and payments

Incoming event streams are buffered for a defined period of time (denoted reten‐
tion). But to avoid doing all of this buffering in memory, state stores—disk-
backed hash tables—overflow the buffered streams to disk. Thus, regardless of
which event turns up later, the corresponding event can be quickly retrieved
from the buffer so the join operation can complete.

Kafka Streams also manages whole tables. Tables are a local manifestation of a
complete topic—usually compacted—held in a state store by key. (You might
also think of them as a stream with infinite retention.) In a services context, such
tables are often used for enrichments. So to look up the customer’s email, we
might use a table loaded from the Customers topic in Kafka.

The nice thing about using a table is that it behaves a lot like tables in a database.
So when we join a stream of orders to a table of customers, there is no need to
worry about retention periods, windows, or other such complexities. Figure 14-4
shows a three-way join between orders, payments, and customers, where cus‐
tomers are represented as a table.

Figure 14-4. A three-way join between two streams and a table

136 | Chapter 14: Kafka Streams and KSQL

http://bit.ly/2DX5Lq9
http://bit.ly/2DX5Lq9
http://bit.ly/2pLN0Sz


1 The difference between these two is actually slightly subtler.

There are actually two types of table in Kafka Streams: KTables and Global KTa‐
bles. With just one instance of a service running, these behave equivalently.
However, if we scaled our service out—so it had four instances running in paral‐
lel—we’d see slightly different behaviors. This is because Global KTables are
broadcast: each service instance gets a complete copy of the entire table. Regular
KTables are partitioned: the dataset is spread over all service instances.

Whether a table is broadcast or partitioned affects the way it can perform joins.
With a Global KTable, because the whole table exists on every node, we can join
to any attribute we wish, much like a foreign key join in a database. This is not
true in a KTable. Because it is partitioned, it can be joined only by its primary
key, just like you have to use the primary key when you join two streams. So to
join a KTable or stream by an attribute that is not its primary key, we must per‐
form a repartition. This is discussed in “Rekey to Join” on page 145 in Chapter 15.

So, in short, Global KTables work well as lookup tables or star joins but take up
more space on disk because they are broadcast. KTables let you scale your serv‐
ices out when the dataset is larger, but may require that data be rekeyed.1

The final use of the state store is to save information, just like we might write
data to a regular database (Figure 14-5). Anything we save can be read back again
later, say after a restart. So we might expose an Admin interface to our email ser‐
vice that provides statistics on emails that have been sent. We could store, these
stats in a state store and they’ll be saved locally as well as being backed up to
Kafka, using what’s called a changelog topic, inheriting all of Kafka’s durability
guarantees.

Figure 14-5. Using a state store to keep application-specific state within the Kafka
Streams API as well as backed up in Kafka

Windows, Joins, Tables, and State Stores | 137

http://bit.ly/kstreams-ktable-issue
https://en.wikipedia.org/wiki/Star_schema


Summary
This chapter provided a brief introduction to streams, tables, and state stores:
three of the most important elements of a streaming application. Streams are
infinite and we process them a record at a time. Tables represent a whole dataset,
materialized locally, which we can join to much like a database table. State stores
behave like dedicated databases which we can read and write to directly with any
information we might wish to store. These features are of course just the tip of
the iceberg, and both Kafka Streams and KSQL provide a far broader set of fea‐
tures, some of which we explore in Chapter 15, but they all build on these base
concepts.

138 | Chapter 14: Kafka Streams and KSQL



1 In this case we choose to use a separate topic, Order Validations, but we might also choose to update the

Orders topic directly using the single-writer-per-transition approach discussed in Chapter 11.

CHAPTER 15

Building Streaming Services

An Order Validation Ecosystem
Having developed a basic understanding of Kafka Streams, now let’s look at the
techniques needed to build a small streaming services application. We will base
this chapter around a simple order processing workflow that validates and pro‐
cesses orders in response to HTTP requests, mapping the synchronous world of a
standard REST interface to the asynchronous world of events, and back again.

Download the code for this example from GitHub.

Starting from the lefthand side of the Figure 15-1, the REST interface provides
methods to POST and GET orders. Posting an order creates an Order Created
event in Kafka. Three validation engines (Fraud, Inventory, Order Details) sub‐

scribe to these events and execute in parallel, emitting a PASS or FAIL based on
whether each validation succeeds. The result of these validations is pushed
through a separate topic, Order Validations, so that we retain the single writer
relationship between the orders service and the Orders topic.1 The results of the
various validation checks are aggregated back in the orders service, which then
moves the order to a Validated or Failed state, based on the combined result.
Validated orders accumulate in the Orders view, where they can be queried his‐
torically. This is an implementation of the CQRS design pattern (see “Command

139

http://bit.ly/kafka-microservice-examples


Query Responsibility Segregation” on page 61 in Chapter 7). The email service
sends confirmation emails.

Figure 15-1. An order processing system implemented as streaming services

The inventory service both validates orders and reserves inventory for the pur‐
chase—an interesting problem, as it involves tying reads and writes together
atomically. We look at this in detail later in this chapter.

Join-Filter-Process
Most streaming systems implement the same broad pattern where a set of
streams is prepared, and then work is performed one event at a time. This
involves three steps:

1. Join. The DSL is used to join a set of streams and tables emitted by other
services.

2. Filter. Anything that isn’t required is filtered. Aggregations are often used
here too.

3. Process. The join result is passed to a function where business logic executes.
The output of this business logic is pushed into another stream.

This pattern is seen in most services but is probably best demonstrated by the
email service, which joins orders, payments, and customers, forwarding the
result to a function that sends an email. The pattern can be implemented in
either Kafka Streams or KSQL equivalently.

140 | Chapter 15: Building Streaming Services



2 It is also common practice to implement such event-sourced views via Kafka Connect and your data‐

base of choice, as we discussed in “Query a Read-Optimized View Created in a Database” on page 69 in

Chapter 7. Use this method when you need a richer query model or greater storage capacity.

Event-Sourced Views in Kafka Streams
To allow users to perform a HTTP GET, and potentially retrieve historical
orders, the orders service creates a queryable event-sourced view. (See “The
Event-Sourced View” on page 71 in Chapter 7.) This works by pushing orders
into a set of state stores partitioned over the three instances of the Orders view,
allowing load and storage to be spread between them.

Figure 15-2. Close-up of the Orders Service, from Figure 15-1, demonstrating the
materialized view it creates which can be accessed via an HTTP GET; the view rep‐
resents the Query-side of the CQRS pattern and is spread over all three instances of
the Orders Service

Because data is partitioned it can be scaled out horizontally (Kafka Streams sup‐
ports dynamic load rebalancing), but it also means GET requests must be routed
to the right node—the one that has the partition for the key being requested. This
is handled automatically via the interactive queries functionality in Kafka
Streams.2

There are actually two parts to this. The first is the query, which defines what
data goes into the view. In this case we are grouping orders by their key (so new
orders overwrite old orders), with the result written to a state store where it can
be queried. We might implement this with the Kafka Streams DSL like so:

 builder.stream(ORDERS.name(), serializer)

        .groupByKey(groupSerializer)

        .reduce((agg, newVal) -> newVal, getStateStore())

Event-Sourced Views in Kafka Streams | 141

http://bit.ly/2pLUeVQ


The second part is to expose the state store(s) over an HTTP endpoint, which is
simple enough, but when running with multiple instances requests must be
routed to the correct partition and instance for a certain key. Kafka Streams
includes a metadata service that does this for you.

Collapsing CQRS with a Blocking Read
The orders service implements a blocking HTTP GET so that clients can read
their own writes. This technique is used to collapse the asynchronous nature of
the CQRS pattern. So, for example, if a client wants to perform a write operation,
immediately followed by a read, the event might not have propagated to the view,
meaning they would either get an error or an incorrect value.

One solution is to block the GET operation until the event arrives (or a config‐
ured timeout passes), collapsing the asynchronicity of the CQRS pattern so that it
appears synchronous to the client. This technique is essentially long polling. The
orders service, in the example code, implements this technique using nonblock‐
ing IO.

Scaling Concurrent Operations in Streaming Systems
The inventory service is interesting because it needs to implement several spe‐
cialist techniques to ensure it works accurately and consistently. The service per‐
forms a simple operation: when a user purchases an iPad, it makes sure there are
enough iPads available for the order to be fulfilled, then physically reserves a
number of them so no other process can take them (Figure 15-3). This is a little
trickier than it may seem initially, as the operation involves managing atomic
state across topics. Specifically:

1. Validate whether there are enough iPads in stock (inventory in warehouse
minus items reserved).

2. Update the table of “reserved items” to reserve the iPad so no one else can
take it.

3. Send out a message that validates the order.

142 | Chapter 15: Building Streaming Services

http://bit.ly/2DXg5hY


Figure 15-3. The inventory service validates orders by ensuring there is enough
inventory in stock, then reserving items using a state store, which is backed by
Kafka; all operations are wrapped in a transaction

This will work reliably only if we:

• Enable Kafka’s transactions feature.

• Ensure that data is partitioned by ProductId before this operation is per‐
formed.

The first point should be pretty obvious: if we fail and we’re not wrapped in a
transaction, we have no idea what state the system will be in. But the second
point should be a little less clear, because for it to make sense we need to think
about this particular operation being scaled out linearly over several different
threads or machines.

Stateful stream processing systems like Kafka Streams have a novel and high-
performance mechanism for managing stateful problems like these concurrently.
We have a single critical section:

1. Read the number of unreserved iPads currently in stock.

2. Reserve the iPads requested on the order.

Let’s first consider how a traditional (i.e., not stateful) streaming system might
work (Figure 15-4). If we scale the operation to run over two parallel processes,
we would run the critical section inside a transaction in a (shared) database. So
both instances would bottleneck on the same database instance.

Scaling Concurrent Operations in Streaming Systems | 143



3 As an aside, one of the nice things about this feature is that it is managed by Kafka, not Kafka Streams.

Kafka’s Consumer Group Protocol lets any group of consumers control how partitions are distributed

across the group.

Figure 15-4. Two instances of a service manage concurrent operations via a shared
database

Stateful stream processing systems like Kafka Streams avoid remote transactions
or cross-process coordination. They do this by partitioning the problem over a
set of threads or processes using a chosen business key. (“Partitions and Parti‐
tioning” was discussed in Chapter 4.) This provides the key (no pun intended) to
scaling these systems horizontally.

Partitioning in Kafka Streams works by rerouting messages so that all the state
required for one particular computation is sent to a single thread, where the
computation can be performed.3 The approach is inherently parallel, which is
how streaming systems achieve such high message-at-a-time processing rates
(for example, in the use case discussed in Chapter 2). But the approach works
only if there is a logical key that cleanly segregates all operations: both state that
they need, and state they operate on.

So splitting (i.e., partitioning) the problem by ProductId ensures that all opera‐

tions for one ProductId will be sequentially executed on the same thread. That
means all iPads will be processed on one thread, all iWatches will be processed
on one (potentially different) thread, and the two will require no coordination
between each other to perform the critical section (Figure 15-5). The resulting
operation is atomic (thanks to Kafka’s transactions), can be scaled out horizon‐
tally, and requires no expensive cross-network coordination. (This is similar to
the Map phase in MapReduce systems.)

144 | Chapter 15: Building Streaming Services

https://kafka.apache.org/0110/documentation/#intro_consumers


Figure 15-5. Services using the Kafka Streams API partition both event streams
and stored state across the various services, which means all data required to run
the critical section exists locally and is accessed by a single thread

The inventory service must rearrange orders so they are processed by ProductId.
This is done with an operation called a rekey, which pushes orders into a new

intermediary topic in Kafka, this time keyed by ProductId, and then back out to
the inventory service. The code is very simple:

orders.selectKey((id, order) -> order.getProduct())//rekey by ProductId

Part 2 of the critical section is a state mutation: inventory must be reserved. The
inventory service does this with a Kafka Streams state store (a local, disk-resident
hash table, backed by a Kafka topic). So each thread executing will have a state
store for “reserved stock” for some subset of the products. You can program with
these state stores much like you would program with a hash map or key/value
store, but with the benefit that all the data is persisted to Kafka and restored if the
process restarts. A state store can be created in a single line of code:

KeyValueStore<Product, Long> store = context.getStateStore(RESERVED);

Then we make use of it, much like a regular hash table:

//Get the current reserved stock for this product

Long reserved = store.get(order.getProduct());

//Add the quantity for this order and submit it back

 store.put(order.getProduct(), reserved + order.getQuantity())

Writing to the store also partakes in Kafka’s transactions, discussed in Chap‐
ter 12.

Rekey to Join
We can apply exactly the same technique used in the previous section, for parti‐
tioning writes, to partitioning reads (e.g., to do a join). Say we want to join a

stream of orders (keyed by OrderId) to a table of warehouse inventory (keyed by

ProductId), as we do in Figure 15-3. The join will have to use the ProductId.

Rekey to Join | 145



This is what would be termed a foreign key relationship in relational parlance,

mapping from WarehouseInventory.ProductId (its primary key) onto

Order.ProductId (which isn’t its primary key). To do this, we need to shuffle
orders across the different nodes so that the orders end up being processed in the
same thread that has the corresponding warehouse inventory assigned.

As mentioned earlier, this data redistribution step is called a rekey, and data
arranged in this way is termed co-partitioned. Once rekeyed, the join condition
can be performed without any additional network access required. For example,

in Figure 15-6, inventory with productId=5 is collocated with orders for produc

tId=5.

Figure 15-6. To perform a join between orders and warehouse inventory by Pro‐
ductId, orders are repartitioned by ProductId, ensuring that for each product all
corresponding orders will be on the same instance

Repartitioning and Staged Execution
Real-world systems are often more complex. One minute we’re performing a
join, the next we’re aggregating by customer or materializing data in a view, with
each operation requiring a different data distribution profile. Different opera‐
tions like these chain together in a pipeline. The inventory service provides a

good example of this. It uses a rekey operation to distribute data by ProductId.

Once complete, it has to be rekeyed back to OrderId so it can be added to the
Orders view (Figure 15-7). (The Orders view is destructive—that is, old versions
of an order will be replaced by newer ones—so it’s important that the stream be

keyed by OrderId so that no data is lost.)

146 | Chapter 15: Building Streaming Services

http://bit.ly/2pLShbZ


Figure 15-7. Two stages, which require joins based on different keys, are chained
together via a rekey operation that changes the key from ProductId to OrderId

There are limitations to this approach, though. The keys used to partition the
event streams must be invariant if ordering is to be guaranteed. So in this particu‐

lar case it means the keys, ProductId and OrderId, on each order must remain
fixed across all messages that relate to that order. Typically, this is a fairly easy
thing to manage at a domain level (for example, by enforcing that, should a user
want to change the product they are purchasing, a brand new order must be cre‐
ated).

Waiting for N Events
Another relatively common use case in business systems is to wait for N events to
occur. This is trivial if each event is located in a different topic—it’s simply a
three-way join—but if events arrive on a single topic, it requires a little more
thought.

The orders service, in the example discussed earlier in this chapter (Figure 15-1),
waits for validation results from each of the three validation services, all sent via

the same topic. Validation succeeds holistically only if all three return a PASS.
Assuming you are counting messages with a certain key, the solution takes the
form:

1. Group by the key.

2. Count occurrences of each key (using an aggregator executed with a win‐
dow).

3. Filter the output for the required count.

Waiting for N Events | 147



Reflecting on the Design
Any distributed system comes with a baseline cost. This should go without say‐
ing. The solution described here provides good scalability and resiliency proper‐
ties, but will always be more complex to implement and run than a simple,
single-process application designed to perform the same logic. You should
always carefully weigh the tradeoff between better nonfunctional properties and
simplicity when designing a system. Having said that, a real system will inevita‐
bly be more complex, with more moving parts, so the pluggability and extensibil‐
ity of this style of system can provide a worthy return against the initial upfront
cost.

A More Holistic Streaming Ecosystem
In this final section we take a brief look at a larger ecosystem (Figure 15-8) that
pulls together some of the main elements discussed in this book thus far, outlin‐
ing how each service contributes, and the implementation patterns each might
use:

Figure 15-8. A more holistic streaming ecosystem

Basket writer/view
These represent an implementation of CQRS, as discussed in “Command
Query Responsibility Segregation” on page 61 in Chapter 7. The Basket
writer proxies HTTP requests, forwarding them to the Basket topic in Kafka
when a user adds a new item. The Confluent REST proxy (which ships with
the Confluent distribution of Kafka) is used for this. The Basket view is an
event-sourced view, implemented in Kafka Streams, with the contents of its

148 | Chapter 15: Building Streaming Services



state stores exposed over a REST interface in a manner similar to the orders
service in the example discussed earlier in this chapter (Kafka Connect and a
database could be substituted also). The view represents a join between User
and Basket topics, but much of the information is thrown away, retaining

only the bare minimum: userId → List[product]. This minimizes the
view’s footprint.

The Catalogue Filter view
This is another event-sourced view but requires richer support for pagina‐
tion, so the implementation uses Kafka Connect and Cassandra.

Catalogue search
A third event-sourced view; this one uses Solr for its full-text search capabili‐
ties.

Orders service
Orders are validated and saved to Kafka. This could be implemented either
as a single service or a small ecosystem like the one detailed earlier in this
chapter.

Catalog service
A legacy codebase that manages changes made to the product catalog, initi‐
ated from an internal UI. This has comparatively fewer users, and an existing
codebase. Events are picked up from the legacy Postgres database using a
CDC connector to push them into Kafka. The single-message transforms
feature reformats the messages before they are made public. Images are
saved to a distributed filesystem for access by the web tier.

Shipping service
A streaming service leveraging the Kafka Streams API. This service reacts to
orders as they are created, updating the Shipping topic as notifications are
received from the delivery company.

Inventory service
Another streaming service leveraging the Kafka Streams API. This service
updates inventory levels as products enter and leave the warehouse.

Archive
All events are archived to HDFS, including two, fixed T-1 and T-10 point-in-
time snapshots for recovery purposes. This uses Kafka Connect and its
HDFS connector.

Streams management
A set of stream processors manages creating latest/versioned topics where
relevant (see the Latest-Versioned pattern in “Long-Term Data Storage” on
page 25 in Chapter 3). This layer also manages the swing topics used when
non-backward-compatible schema changes need to be rolled out. (See “Han‐

A More Holistic Streaming Ecosystem | 149

http://bit.ly/2pHMKTz


dling Schema Change and Breaking Backward Compatibility” on page 124 in
Chapter 13.)

Schema Registry
The Confluent Schema Registry provides runtime validation of schemas and
their compatibility.

Summary
When we build services using a streaming platform, some will be stateless—sim‐
ple functions that take an input, perform a business operation, and produce an
output. Some will be stateful, but read only, as in event-sourced views. Others
will need to both read and write state, either entirely inside the Kafka ecosystem
(and hence wrapped in Kafka’s transactional guarantees), or by calling out to
other services or databases. One of the most attractive properties of a stateful
stream processing API is that all of these options are available, allowing us to
trade the operational ease of stateless approaches for the data processing capabil‐
ities of stateful ones.

But there are of course drawbacks to this approach. While standby replicas,
checkpoints, and compacted topics all mitigate the risks of pushing data to code,
there is always a worst-case scenario where service-resident datasets must be
rebuilt, and this should be considered as part of any system design.

There is also a mindset shift that comes with the streaming model, one that is
inherently more asynchronous and adopts a more functional and data-centric
style, when compared to the more procedural nature of traditional service inter‐
faces. But this is—in the opinion of this author—an investment worth making.

In this chapter we looked at a very simple system that processes orders. We did
this with a set of small streaming microservices that implement the Event Collab‐
oration pattern we discussed in Chapter 5. Finally, we looked at how we can cre‐
ate a larger architecture using the broader range of patterns discussed in this
book.

150 | Chapter 15: Building Streaming Services

http://bit.ly/2I76rvD


About the Author

Ben Stopford is a technologist working in the Office of the CTO at Confluent,
Inc. (the company behind Apache Kafka), where he has worked on a wide range
of projects, from implementing the latest version of Kafka’s replication protocol
through to developing strategies for streaming applications. Before Confluent,
Ben led the design and build of a company-wide data platform for a large finan‐
cial institution, as well as working on a number of early service-oriented systems,
both in finance and at ThoughtWorks.

Ben is a regular conference speaker, blogger, and keen observer of the data-
technology space. He believes that we are entering an interesting and formative
period where data-engineering, software engineering, and the lifecycle of organi‐
sations become ever more closely intertwined.


	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	How to Read This Book
	Acknowledgments

	Part I. Setting the Stage
	Chapter 1. Introduction
	Chapter 2. The Origins of Streaming
	Chapter 3. Is Kafka What You Think It Is?
	Kafka Is Like REST but Asynchronous?
	Kafka Is Like a Service Bus?
	Kafka Is Like a Database?
	What Is Kafka Really? A Streaming Platform

	Chapter 4. Beyond Messaging: An Overview of the Kafka Broker
	The Log: An Efficient Structure for Retaining and Distributing Messages
	Linear Scalability
	Segregating Load in Multiservice Ecosystems
	Maintaining Strong Ordering Guarantees
	Ensuring Messages Are Durable
	Load-Balance Services and Make Them Highly Available
	Compacted Topics
	Long-Term Data Storage
	Security
	Summary


	Part II. Designing Event-Driven Systems
	Chapter 5. Events: A Basis for Collaboration
	Commands, Events, and Queries
	Coupling and Message Brokers
	Is Loose Coupling Always Good?
	Essential Data Coupling Is Unavoidable

	Using Events for Notification
	Using Events to Provide State Transfer
	Which Approach to Use
	The Event Collaboration Pattern
	Relationship with Stream Processing
	Mixing Request- and Event-Driven Protocols
	Summary

	Chapter 6. Processing Events with Stateful Functions
	Making Services Stateful
	The Event-Driven Approach
	The Pure (Stateless) Streaming Approach
	The Stateful Streaming Approach
	The Practicalities of Being Stateful

	Summary

	Chapter 7. Event Sourcing, CQRS, and Other Stateful Patterns
	Event Sourcing, Command Sourcing, and CQRS in a Nutshell
	Version Control for Your Data
	Making Events the Source of Truth
	Command Query Responsibility Segregation
	Materialized Views
	Polyglot Views
	Whole Fact or Delta?
	Implementing Event Sourcing and CQRS with Kafka
	Build In-Process Views with Tables and State Stores in Kafka Streams
	Writing Through a Database into a Kafka Topic with Kafka Connect
	Writing Through a State Store to a Kafka Topic in Kafka Streams
	Unlocking Legacy Systems with CDC
	Query a Read-Optimized View Created in a Database
	Memory Images/Prepopulated Caches
	The Event-Sourced View

	Summary


	Part III. Rethinking Architecture at Company Scales
	Chapter 8. Sharing Data and Services Across an Organization
	Encapsulation Isn’t Always Your Friend
	The Data Dichotomy
	What Happens to Systems as They Evolve?
	The God Service Problem
	The REST-to-ETL Problem

	Make Data on the Outside a First-Class Citizen
	Don’t Be Afraid to Evolve
	Summary

	Chapter 9. Event Streams as a Shared Source of Truth
	A Database Inside Out
	Summary

	Chapter 10. Lean Data
	If Messaging Remembers, Databases Don’t Have To
	Take Only the Data You Need, Nothing More
	Rebuilding Event-Sourced Views
	Kafka Streams
	Databases and Caches
	Handling the Impracticalities of Data Movement

	Automation and Schema Migration
	The Data Divergence Problem

	Summary


	Part IV. Consistency, Concurrency, and Evolution
	Chapter 11. Consistency and Concurrency in Event-Driven Systems
	Eventual Consistency
	Timeliness
	Collisions and Merging

	The Single Writer Principle
	Command Topic
	Single Writer Per Transition

	Atomicity with Transactions
	Identity and Concurrency Control
	Limitations
	Summary

	Chapter 12. Transactions, but Not as We Know Them
	The Duplicates Problem
	Using the Transactions API to Remove Duplicates
	Exactly Once Is Both Idempotence and Atomic Commit
	How Kafka’s Transactions Work Under the Covers
	Store State and Send Events Atomically
	Do We Need Transactions? Can We Do All This with Idempotence?
	What Can’t Transactions Do?
	Making Use of Transactions in Your Services
	Summary

	Chapter 13. Evolving Schemas and Data over Time
	Using Schemas to Manage the Evolution of Data in Time
	Handling Schema Change and Breaking Backward Compatibility
	Collaborating over Schema Change
	Handling Unreadable Messages
	Deleting Data
	Triggering Downstream Deletes

	Segregating Public and Private Topics
	Summary


	Part V. Implementing Streaming Services with Kafka
	Chapter 14. Kafka Streams and KSQL
	A Simple Email Service Built with Kafka Streams and KSQL
	Windows, Joins, Tables, and State Stores
	Summary

	Chapter 15. Building Streaming Services
	An Order Validation Ecosystem
	Join-Filter-Process
	Event-Sourced Views in Kafka Streams
	Collapsing CQRS with a Blocking Read
	Scaling Concurrent Operations in Streaming Systems
	Rekey to Join
	Repartitioning and Staged Execution
	Waiting for N Events
	Reflecting on the Design
	A More Holistic Streaming Ecosystem
	Summary


	About the Author

