
Martin Kleppmann

Com
plim

ents of

The Philosophy Behind Apache Kafka
and Scalable Stream Data Platforms

Making Sense of
Stream Processing

Apache Kafka and Confluent Platform

DOWNLOAD

Compliments of

http://www.confluent.io/developer?utm_campaign=Download%20Kafka&utm_medium=Ebook&utm_source=Stream%20Processing%20Book#download

Martin Kleppmann

Making Sense of
Stream Processing

The Philosophy Behind Apache Kafka

and Scalable Stream Data Platforms

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-94010-5

[LSI]

Making Sense of Stream Processing
by Martin Kleppmann

Copyright © 2016 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Shannon Cutt

Production Editor: Melanie Yarbrough

Copyeditor: Octal Publishing

Proofreader: Christina Edwards

Interior Designer: David Futato

Cover Designer: Randy Comer

Illustrator: Rebecca Demarest

March 2016: First Edition

Revision History for the First Edition

2016-03-04: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Making Sense of
Stream Processing, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Foreword. v

Preface. vii

1. Events and Stream Processing. 1
Implementing Google Analytics: A Case Study 3
Event Sourcing: From the DDD Community 9
Bringing Together Event Sourcing and Stream Processing 14
Using Append-Only Streams of Immutable Events 27
Tools: Putting Ideas into Practice 31
CEP, Actors, Reactive, and More 34

2. Using Logs to Build a Solid Data Infrastructure. 39
Case Study: Web Application Developers Driven to Insanity 40
Making Sure Data Ends Up in the Right Places 52
The Ubiquitous Log 53
How Logs Are Used in Practice 54
Solving the Data Integration Problem 72
Transactions and Integrity Constraints 74
Conclusion: Use Logs to Make Your Infrastructure Solid 76
Further Reading 79

3. Integrating Databases and Kafka with Change Data Capture. 81
Introducing Change Data Capture 81
Database = Log of Changes 83
Implementing the Snapshot and the Change Stream 85

iii

Bottled Water: Change Data Capture with PostgreSQL and
Kafka 86

The Logical Decoding Output Plug-In 96
Status of Bottled Water 100

4. The Unix Philosophy of Distributed Data. 101
Simple Log Analysis with Unix Tools 101
Pipes and Composability 106
Unix Architecture versus Database Architecture 110
Composability Requires a Uniform Interface 117
Bringing the Unix Philosophy to the Twenty-First Century 120

5. Turning the Database Inside Out. 133
How Databases Are Used 134
Materialized Views: Self-Updating Caches 153
Streaming All the Way to the User Interface 165
Conclusion 170

iv | Table of Contents

Foreword

Whenever people are excited about an idea or technology, they
come up with buzzwords to describe it. Perhaps you have come
across some of the following terms, and wondered what they are
about: “stream processing”, “event sourcing”, “CQRS”, “reactive”, and
“complex event processing”.

Sometimes, such self-important buzzwords are just smoke and mir‐
rors, invented by companies that want to sell you their solutions. But
sometimes, they contain a kernel of wisdom that can really help us
design better systems.

In this report, Martin goes in search of the wisdom behind these
buzzwords. He discusses how event streams can help make your
applications more scalable, more reliable, and more maintainable.
People are excited about these ideas because they point to a future of
simpler code, better robustness, lower latency, and more flexibility
for doing interesting things with data. After reading this report,
you’ll see the architecture of your own applications in a completely
new light.

This report focuses on the architecture and design decisions behind
stream processing systems. We will take several different perspec‐
tives to get a rounded overview of systems that are based on event
streams, and draw comparisons to the architecture of databases,
Unix, and distributed systems. Confluent, a company founded by
the creators of Apache Kafka, is pioneering work in the stream pro‐
cessing area and is building an open source stream data platform to
put these ideas into practice.

v

http://confluent.io
http://kafka.apache.org
http://www.confluent.io/product

For a deep dive into the architecture of databases and scalable data
systems in general, see Martin Kleppmann’s book “Designing Data-
Intensive Applications,” available from O’Reilly.

—Neha Narkhede, Cofounder and CTO, Confluent Inc.

vi | Foreword

http://dataintensive.net
http://dataintensive.net

Preface

This report is based on a series of conference talks I gave in 2014/15:

• “Turning the database inside out with Apache Samza,” at
Strange Loop, St. Louis, Missouri, US, 18 September 2014.

• “Making sense of stream processing,” at /dev/winter, Cam‐
bridge, UK, 24 January 2015.

• “Using logs to build a solid data infrastructure,” at Craft Confer‐
ence, Budapest, Hungary, 24 April 2015.

• “Systems that enable data agility: Lessons from LinkedIn,” at
Strata + Hadoop World, London, UK, 6 May 2015.

• “Change data capture: The magic wand we forgot,” at Berlin
Buzzwords, Berlin, Germany, 2 June 2015.

• “Samza and the Unix philosophy of distributed data,” at UK
Hadoop Users Group, London, UK, 5 August 2015

Transcripts of those talks were previously published on the Conflu‐
ent blog, and video recordings of some of the talks are available
online. For this report, we have edited the content and brought it up
to date. The images were drawn on an iPad, using the app “Paper”
by FiftyThree, Inc.

Many people have provided valuable feedback on the original blog
posts and on drafts of this report. In particular, I would like to thank
Johan Allansson, Ewen Cheslack-Postava, Jason Gustafson, Peter
van Hardenberg, Jeff Hartley, Pat Helland, Joe Hellerstein, Flavio
Junqueira, Jay Kreps, Dmitry Minkovsky, Neha Narkhede, Michael
Noll, James Nugent, Assaf Pinhasi, Gwen Shapira, and Greg Young
for their feedback.

vii

http://martin.kleppmann.com/2014/09/18/turning-database-inside-out-at-strange-loop.html
http://martin.kleppmann.com/2015/01/24/stream-processing-at-dev-winter.html
http://martin.kleppmann.com/2015/04/24/logs-for-data-infrastructure-at-craft.html
http://martin.kleppmann.com/2015/05/06/data-agility-at-strata.html
http://martin.kleppmann.com/2015/06/02/change-capture-at-berlin-buzzwords.html
http://martin.kleppmann.com/2015/08/05/samza-unix-philosophy-at-huguk.html
http://www.confluent.io/blog
http://www.confluent.io/blog
https://www.fiftythree.com/paper

Thank you to LinkedIn for funding large portions of the open
source development of Kafka and Samza, to Confluent for sponsor‐
ing this report and for moving the Kafka ecosystem forward, and to
Ben Lorica and Shannon Cutt at O’Reilly for their support in creat‐
ing this report.

—Martin Kleppmann, January 2016

viii | Preface

1 “Apache Kafka,” Apache Software Foundation, kafka.apache.org.

CHAPTER 1

Events and Stream Processing

The idea of structuring data as a stream of events is nothing new,
and it is used in many different fields. Even though the underlying
principles are often similar, the terminology is frequently inconsis‐
tent across different fields, which can be quite confusing. Although
the jargon can be intimidating when you first encounter it, don’t let
that put you off; many of the ideas are quite simple when you get
down to the core.

We will begin in this chapter by clarifying some of the terminology
and foundational ideas. In the following chapters, we will go into
more detail of particular technologies such as Apache Kafka1 and
explain the reasoning behind their design. This will help you make
effective use of those technologies in your applications.

Figure 1-1 lists some of the technologies using the idea of event
streams. Part of the confusion seems to arise because similar techni‐
ques originated in different communities, and people often seem to
stick within their own community rather than looking at what their
neighbors are doing.

1

http://kafka.apache.org

2 David C Luckham: “Rapide: A Language and Toolset for Simulation of Distributed Sys‐

tems by Partial Orderings of Events,” Stanford University, Computer Systems Labora‐

tory, Technical Report CSL-TR-96-705, September 1996.

Figure 1-1. Buzzwords related to event-stream processing.

The current tools for distributed stream processing have come out
of Internet companies such as LinkedIn, with philosophical roots in
database research of the early 2000s. On the other hand, complex
event processing (CEP) originated in event simulation research in the
1990s2 and is now used for operational purposes in enterprises.
Event sourcing has its roots in the domain-driven design (DDD)
community, which deals with enterprise software development—
people who have to work with very complex data models but often
smaller datasets than Internet companies.

My background is in Internet companies, but here we’ll explore the
jargon of the other communities and figure out the commonalities
and differences. To make our discussion concrete, I’ll begin by giv‐
ing an example from the field of stream processing, specifically ana‐
lytics. I’ll then draw parallels with other areas.

2 | Chapter 1: Events and Stream Processing

http://i.stanford.edu/pub/cstr/reports/csl/tr/96/705/CSL-TR-96-705.pdf
http://i.stanford.edu/pub/cstr/reports/csl/tr/96/705/CSL-TR-96-705.pdf

Implementing Google Analytics: A Case Study
As you probably know, Google Analytics is a bit of JavaScript that
you can put on your website, and that keeps track of which pages
have been viewed by which visitors. An administrator can then
explore this data, breaking it down by time period, by URL, and so
on, as shown in Figure 1-2.

Figure 1-2. Google Analytics collects events (page views on a website)
and helps you to analyze them.

How would you implement something like Google Analytics? First
take the input to the system. Every time a user views a page, we need
to log an event to record that fact. A page view event might look
something like the example in Figure 1-3 (using a kind of pseudo-
JSON).

Implementing Google Analytics: A Case Study | 3

Figure 1-3. An event that records the fact that a particular user viewed
a particular page.

A page view has an event type (PageViewEvent), a Unix timestamp
that indicates when the event happened, the IP address of the client,
the session ID (this may be a unique identifier from a cookie that
allows you to figure out which series of page views is from the same
person), the URL of the page that was viewed, how the user got to
that page (for example, from a search engine, or by clicking a link
from another site), the user’s browser and language settings, and so
on.

Note that each page view event is a simple, immutable fact—it sim‐
ply records that something happened.

Now, how do you go from these page view events to the nice graphi‐
cal dashboard on which you can explore how people are using your
website?

Broadly speaking, you have two options, as shown in Figure 1-4.

4 | Chapter 1: Events and Stream Processing

Figure 1-4. Two options for turning page view events into aggregate
statistics.

Option (a)
You can simply store every single event as it comes in, and then
dump them all into a big database, a data warehouse, or a
Hadoop cluster. Now, whenever you want to analyze this data in
some way, you run a big SELECT query against this dataset. For
example, you might group by URL and by time period, or you
might filter by some condition and then COUNT(*) to get the
number of page views for each URL over time. This will scan
essentially all of the events, or at least some large subset, and do
the aggregation on the fly.

Option (b)
If storing every single event is too much for you, you can
instead store an aggregated summary of the events. For exam‐
ple, if you’re counting things, you can increment a few counters
every time an event comes in, and then you throw away the

Implementing Google Analytics: A Case Study | 5

3 Jim N Gray, Surajit Chaudhuri, Adam Bosworth, et al.: “Data Cube: A Relational

Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals,” Data Min‐

ing and Knowledge Discovery, volume 1, number 1, pages 29–53, March 2007. doi:

10.1023/A:1009726021843

actual event. You might keep several counters in an OLAP cube:3

imagine a multidimensional cube for which one dimension is
the URL, another dimension is the time of the event, another
dimension is the browser, and so on. For each event, you just
need to increment the counters for that particular URL, that
particular time, and so on.

With an OLAP cube, when you want to find the number of page
views for a particular URL on a particular day, you just need to read
the counter for that combination of URL and date. You don’t need to
scan over a long list of events—it’s just a matter of reading a single
value.

Now, option (a) in Figure 1-5 might sound a bit crazy, but it actually
works surprisingly well. I believe Google Analytics actually does
store the raw events—or at least a large sample of events—and per‐
forms a big scan over those events when you look at the data.
Modern analytic databases have become really good at scanning
quickly over large amounts of data.

6 | Chapter 1: Events and Stream Processing

http://arxiv.org/pdf/cs/0701155.pdf
http://arxiv.org/pdf/cs/0701155.pdf
http://dx.doi.org/10.1023/A:1009726021843
http://dx.doi.org/10.1023/A:1009726021843

Figure 1-5. Storing raw event data versus aggregating immediately.

The big advantage of storing raw event data is that you have maxi‐
mum flexibility for analysis. For example, you can trace the
sequence of pages that one person visited over the course of their
session. You can’t do that if you’ve squashed all the events into coun‐
ters. That sort of analysis is really important for some offline pro‐
cessing tasks such as training a recommender system (e.g., “people
who bought X also bought Y”). For such use cases, it’s best to simply
keep all the raw events so that you can later feed them all into your
shiny new machine-learning system.

However, option (b) in Figure 1-5 also has its uses, especially when
you need to make decisions or react to things in real time. For
example, if you want to prevent people from scraping your website,
you can introduce a rate limit so that you only allow 100 requests
per hour from any particular IP address; if a client exceeds the limit,
you block it. Implementing that with raw event storage would be
incredibly inefficient because you’d be continually rescanning your
history of events to determine whether someone has exceeded the
limit. It’s much more efficient to just keep a counter of number of
page views per IP address per time window, and then you can check
on every request whether that number has crossed your threshold.

Implementing Google Analytics: A Case Study | 7

Similarly, for alerting purposes, you need to respond quickly to what
the events are telling you. For stock market trading, you also need to
be quick.

The bottom line here is that raw event storage and aggregated sum‐
maries of events are both very useful—they just have different use
cases.

Aggregated Summaries
Let’s focus on aggregated summaries for now—how do you imple‐
ment them?

Well, in the simplest case, you simply have the web server update the
aggregates directly, as illustrated in Figure 1-6. Suppose that you
want to count page views per IP address per hour, for rate limiting
purposes. You can keep those counters in something like
memcached or Redis, which have an atomic increment operation.
Every time a web server processes a request, it directly sends an
increment command to the store, with a key that is constructed
from the client IP address and the current time (truncated to the
nearest hour).

Figure 1-6. The simplest implementation of streaming aggregation.

8 | Chapter 1: Events and Stream Processing

Figure 1-7. Implementing streaming aggregation with an event stream.

If you want to get a bit more sophisticated, you can introduce an
event stream, or a message queue, or an event log (or whatever you
want to call it), as illustrated in Figure 1-7. The messages on that
stream are the PageViewEvent records that we saw earlier: one mes‐
sage contains the content of one particular page view.

The advantage of this architecture is that you can now have multiple
consumers for the same event data. You can have one consumer that
simply archives the raw events to some big storage; even if you don’t
yet have the capability to process the raw events, you might as well
store them, since storage is cheap and you can figure out how to use
them in future. Then, you can have another consumer that does
some aggregation (for example, incrementing counters), and
another consumer that does monitoring or something else—those
can all feed off of the same event stream.

Event Sourcing: From the DDD Community
Now let’s change the topic for a moment, and look at similar ideas
from a different field. Event sourcing is an idea that has come out of

Event Sourcing: From the DDD Community | 9

4 Vaughn Vernon: Implementing Domain-Driven Design. Addison-Wesley Professional,

February 2013. ISBN: 0321834577

the DDD community4—it seems to be fairly well known among
enterprise software developers, but it’s totally unknown in Internet
companies. It comes with a large amount of jargon that I find con‐
fusing, but it also contains some very good ideas.

Figure 1-8. Event sourcing is an idea from the DDD community.

Let’s try to extract those good ideas without going into all of the jar‐
gon, and we’ll see that there are some surprising parallels with the
last example from the field of stream processing analytics.

Event sourcing is concerned with how we structure data in databases.
A sample database I’m going to use is a shopping cart from an e-
commerce website (Figure 1-9). Each customer may have some
number of different products in their cart at one time, and for each
item in the cart there is a quantity.

10 | Chapter 1: Events and Stream Processing

Figure 1-9. Example database: a shopping cart in a traditional rela‐
tional schema.

Now, suppose that customer 123 updates their cart: instead of quan‐
tity 1 of product 999, they now want quantity 3 of that product. You
can imagine this being recorded in the database using an UPDATE
query, which matches the row for customer 123 and product 999,
and modifies that row, changing the quantity from 1 to 3
(Figure 1-10).

Event Sourcing: From the DDD Community | 11

Figure 1-10. Changing a customer’s shopping cart, as an UPDATE
query.

This example uses a relational data model, but that doesn’t really
matter. With most non-relational databases you’d do more or less
the same thing: overwrite the old value with the new value when it
changes.

However, event sourcing says that this isn’t a good way to design
databases. Instead, we should individually record every change that
happens to the database.

For example, Figure 1-11 shows an example of the events logged
during a user session. We recorded an AddedToCart event when
customer 123 first added product 888 to their cart, with quantity 1.
We then recorded a separate UpdatedCartQuantity event when they
changed the quantity to 3. Later, the customer changed their mind
again, and reduced the quantity to 2, and, finally, they went to the
checkout.

12 | Chapter 1: Events and Stream Processing

Figure 1-11. Recording every change that was made to a shopping cart.

Each of these actions is recorded as a separate event and appended
to the database. You can imagine having a timestamp on every event,
too.

When you structure the data like this, every change to the shopping
cart is an immutable event—a fact (Figure 1-12). Even if the cus‐
tomer did change the quantity to 2, it is still true that at a previous
point in time, the selected quantity was 3. If you overwrite data in
your database, you lose this historic information. Keeping the list of
all changes as a log of immutable events thus gives you strictly richer
information than if you overwrite things in the database.

Event Sourcing: From the DDD Community | 13

Figure 1-12. Record every write as an immutable event rather than
just updating a database in place.

And this is really the essence of event sourcing: rather than perform‐
ing destructive state mutation on a database when writing to it, we
should record every write as an immutable event.

Bringing Together Event Sourcing and Stream
Processing
This brings us back to our stream-processing example (Google Ana‐
lytics). Remember we discussed two options for storing data: (a) raw
events, or (b) aggregated summaries (Figure 1-13).

14 | Chapter 1: Events and Stream Processing

Figure 1-13. Storing raw events versus aggregated data.

Put like this, stream processing for analytics and event sourcing are
beginning to look quite similar. Both PageViewEvent (Figure 1-3)
and an event-sourced database (AddedToCart, UpdatedCartQuan‐
tity) comprise the history of what happened over time. But, when
you’re looking at the contents of your shopping cart, or the count of
page views, you see the current state of the system—the end result,
which is what you get when you have applied the entire history of
events and squashed them together into one thing.

So the current state of the cart might say quantity 2. The history of
raw events will tell you that at some previous point in time the quan‐
tity was 3, but that the customer later changed their mind and upda‐
ted it to 2. The aggregated end result only tells you that the current
quantity is 2.

Thinking about it further, you can observe that the raw events are
the form in which it’s ideal to write the data: all the information in
the database write is contained in a single blob. You don’t need to go
and update five different tables if you’re storing raw events—you
only need to append the event to the end of a log. That’s the simplest
and fastest possible way of writing to a database (Figure 1-14).

Bringing Together Event Sourcing and Stream Processing | 15

5 Greg Young: “CQRS and Event Sourcing,” codebetter.com, 13 February 2010.

Figure 1-14. Events are optimized for writes; aggregated values are
optimized for reads.

On the other hand, the aggregated data is the form in which it’s ideal
to read data from the database. If a customer is looking at the con‐
tents of their shopping cart, they are not interested in the entire his‐
tory of modifications that led to the current state: they only want to
know what’s in the cart right now. An analytics application normally
doesn’t need to show the user the full list of all page views—only the
aggregated summary in the form of a chart.

Thus, when you’re reading, you can get the best performance if the
history of changes has already been squashed together into a single
object representing the current state. In general, the form of data
that’s best optimized for writing is not the same as the form that is
best optimized for reading. It can thus make sense to separate the
way you write to your system from the way you read from it (this
idea is sometimes known as command-query responsibility segrega‐
tion, or CQRS5)—more on this later.

16 | Chapter 1: Events and Stream Processing

http://codebetter.com/gregyoung/2010/02/13/cqrs-and-event-sourcing/

Figure 1-15. As a rule of thumb, clicking a button causes an event to be
written, and what a user sees on their screen corresponds to aggregated
data that is read.

Going even further, think about the user interfaces that lead to data‐
base writes and database reads. A database write typically happens
because the user clicks some button; for example, they edit some
data and then click the save button. So, buttons in the user interface
correspond to raw events in the event sourcing history
(Figure 1-15).

On the other hand, a database read typically happens because the
user views some screen; they click on some link or open some docu‐
ment, and now they need to read the contents. These reads typically
want to know the current state of the database. Thus, screens in the
user interface correspond to aggregated state.

This is quite an abstract idea, so let me go through a few examples.

Twitter
For our first example, let’s take a look at Twitter (Figure 1-16). The
most common way of writing to Twitter’s database—that is, to pro‐
vide input into the Twitter system—is to tweet something. A tweet is
very simple: it consists of some text, a timestamp, and the ID of the

Bringing Together Event Sourcing and Stream Processing | 17

user who tweeted (perhaps also optionally a location or a photo).
The user then clicks that “Tweet” button, which causes a database
write to happen—an event is generated.

Figure 1-16. Twitter’s input: a tweet button. Twitter’s output: a time‐
line.

On the output side, how you read from Twitter’s database is by view‐
ing your timeline. It shows all the stuff that was written by people
you follow. It’s a vastly more complicated structure (Figure 1-17).

18 | Chapter 1: Events and Stream Processing

Figure 1-17. Data is written in a simple form; it is read in a much
more complex form.

For each tweet, you now have not just the text, timestamp, and user
ID, but also the name of the user, their profile photo, and other
information that has been joined with the tweet. Also, the list of
tweets has been selected based on the people you follow, which may
itself change.

How would you go from the simple input to the more complex out‐
put? Well, you could try expressing it in SQL, as shown in
Figure 1-18.

Bringing Together Event Sourcing and Stream Processing | 19

6 Raffi Krikorian: “Timelines at Scale,” at QCon San Francisco, November 2012.

Figure 1-18. Generating a timeline of tweets by using SQL.

That is, find all of the users who $user is following, find all the
tweets that they have written, order them by time and pick the 100
most recent. It turns out this query really doesn’t scale very well. Do
you remember in the early days of Twitter, when it kept having the
fail whale all the time? Essentially, that was because they were using
something like the query above6.

When a user views their timeline, it’s too expensive to iterate over all
the people they are following to get those users’ tweets. Instead,
Twitter must compute a user’s timeline ahead of time, and cache it
so that it’s fast to read when a user looks at it. To do that, the system
needs a process that translates from the write-optimized event (a
single tweet) to the read-optimized aggregate (a timeline). Twitter
has such a process, and calls it the fanout service. We will discuss it
in more detail in Chapter 5.

Facebook
For another example, let’s look at Facebook. It has many buttons that
enable you to write something to Facebook’s database, but a classic
one is the “Like” button. When you click it, you generate an event, a

20 | Chapter 1: Events and Stream Processing

http://www.infoq.com/presentations/Twitter-Timeline-Scalability

fact with a very simple structure: you (identified by your user ID)
like (an action verb) some item (identified by its ID) (Figure 1-19).

Figure 1-19. Facebook’s input: a “like” button. Facebook’s output: a
timeline post, liked by lots of people.

However, if you look at the output side—reading something on
Facebook—it’s incredibly complicated. In this example, we have a
Facebook post which is not just some text, but also the name of the
author and his profile photo; and it’s telling me that 160,216 people
like this update, of which three have been especially highlighted
(presumably because Facebook thinks that among those who liked
this update, these are the ones I am most likely to know); it’s telling
me that there are 6,027 shares and 12,851 comments, of which the
top 4 comments are shown (clearly some kind of comment ranking
is happening here); and so on.

There must be some translation process happening here, which
takes the very simple events as input and then produces a massively
complex and personalized output structure (Figure 1-20).

Bringing Together Event Sourcing and Stream Processing | 21

Figure 1-20. When you view a Facebook post, hundreds of thousands
of events may have been aggregated in its making.

One can’t even conceive what the database query would look like to
fetch all of the information in that one Facebook update. It is
unlikely that Facebook could efficiently query all of this on the fly—
not with over 100,000 likes. Clever caching is absolutely essential if
you want to build something like this.

Immutable Facts and the Source of Truth
From the Twitter and Facebook examples we can see a certain pat‐
tern: the input events, corresponding to the buttons in the user
interface, are quite simple. They are immutable facts, we can simply
store them all, and we can treat them as the source of truth
(Figure 1-21).

22 | Chapter 1: Events and Stream Processing

7 Pat Helland: “Accountants Don’t Use Erasers,” blogs.msdn.com, 14 June 2007.

Figure 1-21. Input events that correspond to buttons in a user interface
are quite simple.

You can derive everything that you can see on a website—that is,
everything that you read from the database—from those raw events.
There is a process that derives those aggregates from the raw events,
and which updates the caches when new events come in, and that
process is entirely deterministic. You could, if necessary, re-run it
from scratch: if you feed in the entire history of everything that ever
happened on the site, you can reconstruct every cache entry to be
exactly as it was before. The database you read from is just a cached
view of the event log.7

The beautiful thing about this separation between source of truth
and caches is that in your caches, you can denormalize data to your
heart’s content. In regular databases, it is often considered best prac‐
tice to normalize data, because if something changes, you then only
need to change it one place. Normalization makes writes fast and
simple, but it means you must do more work (joins) at read time.

To speed up reads, you can denormalize data; that is, duplicate
information in various places so that it can be read faster. The prob‐

Bringing Together Event Sourcing and Stream Processing | 23

http://blogs.msdn.com/b/pathelland/archive/2007/06/14/accountants-don-t-use-erasers.aspx

lem now is that if the original data changes, all the places where you
copied it to also need to change. In a typical database, that’s a night‐
mare because you might not know all the places where something
has been copied. But, if your caches are built from your raw events
using a repeatable process, you have much more freedom to
denormalize because you know what data is flowing where.

Wikipedia
Another example is Wikipedia. This is almost a counter-example to
Twitter and Facebook, because on Wikipedia the input and the out‐
put are almost the same (Figure 1-22).

Figure 1-22. Wikipedia’s input: an edit form. Wikipedia’s output: an
article.

When you edit a page on Wikipedia, you get a big text field contain‐
ing the entire page content (using wiki markup), and when you click
the save button, it sends that entire page content back to the server.
The server replaces the entire page with whatever you posted to it.
When someone views the page, it returns that same content back to
the user (formatted into HTML), as illustrated in Figure 1-23.

24 | Chapter 1: Events and Stream Processing

8 John Day-Richter: “What’s different about the new Google Docs: Making collaboration

fast,” googledrive.blogspot.com, 23 September 2010.

Figure 1-23. On Wikipedia, the input and the output are almost the
same.

So, in this case, the input and the output are essentially the same.

What would event sourcing mean in this case? Would it perhaps
make sense to represent a write event as a diff, like a patch file,
rather than a copy of the entire page? It’s an interesting case to think
about. (Google Docs works by continually applying diffs at the gran‐
ularity of individual characters—effectively an event per keystroke.8)

LinkedIn
For our final example, let’s consider LinkedIn. Suppose that you
update your LinkedIn profile, and add your current job, which con‐
sists of a job title, a company, and some text. Again, the edit event
for writing to the database is very simple (Figure 1-24).

Bringing Together Event Sourcing and Stream Processing | 25

http://googledrive.blogspot.com/2010/09/whats-different-about-new-google-docs.html
http://googledrive.blogspot.com/2010/09/whats-different-about-new-google-docs.html

Figure 1-24. LinkedIn’s input: your profile edits. LinkedIn’s output: a
search engine over everybody’s profiles.

There are various ways how you can read this data, but in this exam‐
ple, let’s look at the search feature. One way that you can read
LinkedIn’s database is by typing some keywords (and maybe a com‐
pany name) into a search box and finding all the people who match
those criteria.

How is that implemented? Well, to search, you need a full-text
index, which is essentially a big dictionary—for every keyword, it
tells you the IDs of all the profiles that contain the keyword
(Figure 1-25).

26 | Chapter 1: Events and Stream Processing

Figure 1-25. A full-text index summarizes which profiles contain
which keywords; when a profile is updated, the index needs to be
updated accordingly.

This search index is another aggregate structure, and whenever
some data is written to the database, this structure needs to be upda‐
ted with the new data.

So, for example, if I add my job “Author at O’Reilly” to my profile,
the search index must now be updated to include my profile ID
under the entries for “author” and “o’reilly.” The search index is just
another kind of cache. It also needs to be built from the source of
truth (all the profile edits that have ever occurred), and it needs to
be updated whenever a new event occurs (someone edits their pro‐
file).

Using Append-Only Streams of Immutable
Events
Now, let’s return to stream processing.

I first described how you might build something like Google Analyt‐
ics, compared storing raw page view events versus aggregated coun‐
ters, and discussed how you can maintain those aggregates by
consuming a stream of events (Figure 1-7). I then explained event

Using Append-Only Streams of Immutable Events | 27

sourcing, which applies a similar approach to databases: treat all the
database writes as a stream of events, and build aggregates (views,
caches, search indexes) from that stream.

Figure 1-26. Several possibilities for using an event stream.

When you have that event stream, you can do many great things
with it (Figure 1-26):

• You can take all the raw events, perhaps transform them a bit,
and load them into Hadoop or a big data warehouse where ana‐
lysts can query the data to their heart’s content.

• You can update full-text search indexes so that when a user hits
the search box, they are searching an up-to-date version of the
data. We will discuss this in more detail in Chapter 2.

• You can invalidate or refill any caches so that reads can be
served from fast caches while also ensuring that the data in the
cache remains fresh.

• And finally, you can even take one event stream, and process it
in some way (perhaps joining a few streams together) to create a
new output stream. This way, you can plug the output of one
system into the input of another system. This is a very powerful

28 | Chapter 1: Events and Stream Processing

way of building complex applications cleanly, which we will dis‐
cuss in Chapter 4.

Moving to an event-sourcing-like approach for databases is a big
change from the way that databases have traditionally been used (in
which you can update and delete data at will). Why would you want
to go to all that effort of changing the way you do things? What’s the
benefit of using append-only streams of immutable events?

Figure 1-27. Several reasons why you might benefit from an event-
sourced approach.

There are several reasons (Figure 1-27):

Loose coupling
If you write data to the database in the same schema as you use
for reading, you have tight coupling between the part of the
application doing the writing (the “button”) and the part doing
the reading (the “screen”). We know that loose coupling is a
good design principle for software. By separating the form in
which you write and read data, and by explicitly translating
from one to the other, you get much looser coupling between
different parts of your application.

Using Append-Only Streams of Immutable Events | 29

9 Martin Fowler: “The LMAX Architecture,” martinfowler.com, 12 July 2011.

Read and write performance
The decades-old debate over normalization (faster writes) ver‐
sus denormalization (faster reads) exists only because of the
assumption that writes and reads use the same schema. If you
separate the two, you can have fast writes and fast reads.

Scalability
Event streams are great for scalability because they are a simple
abstraction (comparatively easy to parallelize and scale across
multiple machines), and because they allow you to decompose
your application into producers and consumers of streams
(which can operate independently and can take advantage of
more parallelism in hardware).

Flexibility and agility
Raw events are so simple and obvious that a “schema migration”
doesn’t really make sense (you might just add a new field from
time to time, but you don’t usually need to rewrite historic data
into a new format). On the other hand, the ways in which you
want to present data to users are much more complex, and can
be continually changing. If you have an explicit translation pro‐
cess between the source of truth and the caches that you read
from, you can experiment with new user interfaces by just
building new caches using new logic, running the new system in
parallel with the old one, gradually moving people over from
the old system, and then discarding the old system (or reverting
to the old system if the new one didn’t work). Such flexibility is
incredibly liberating.

Error scenarios
Error scenarios are much easier to reason about if data is
immutable. If something goes wrong in your system, you can
always replay events in the same order and reconstruct exactly
what happened9 (especially important in finance, for which
auditability is crucial). If you deploy buggy code that writes bad
data to a database, you can just re-run it after you fixed the bug
and thus correct the outputs. Those things are not possible if
your database writes are destructive.

30 | Chapter 1: Events and Stream Processing

http://martinfowler.com/articles/lmax.html

10 “Event Store,” Event Store LLP, geteventstore.com.

11 “Apache Kafka,” Apache Software Foundation, kafka.apache.org.

12 “Apache Samza,” Apache Software Foundation, samza.apache.org.

13 Jay Kreps: “Benchmarking Apache Kafka: 2 Million Writes Per Second (On Three

Cheap Machines),” engineering.linkedin.com, 27 April 2014.

14 Todd Palino: “Running Kafka At Scale,” engineering.linkedin.com, 20 March 2015.

15 Guozhang Wang: “KIP-28 – Add a processor client,” cwiki.apache.org, 24 July 2015.

Tools: Putting Ideas into Practice
Let’s talk about how you might put these ideas into practice. How do
you build applications using this idea of event streams?

Some databases such as Event Store10 have oriented themselves
specifically at the event sourcing model, and some people have
implemented event sourcing on top of relational databases.

The systems I have worked with most—and that we discuss most in
this report—are Apache Kafka11 and Apache Samza.12 Both are open
source projects that originated at LinkedIn and now have a big com‐
munity around them. Kafka provides a publish-subscribe message
queuing service, supporting event streams with many millions of
messages per second, durably stored on disk and replicated across
multiple machines.13,14

For consuming input streams and producing output streams, Kafka
comes with a client library called Kafka Streams (Figure 1-28): it lets
you write code to process messages, and it handles stuff like state
management and recovering from failures.15

Tools: Putting Ideas into Practice | 31

https://geteventstore.com
http://kafka.apache.org
http://samza.apache.org
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/running-kafka-scale
https://cwiki.apache.org/confluence/display/KAFKA/KIP-28+-+Add+a+processor+client

16 “Apache Samza,” Apache Software Foundation, samza.apache.org.

17 “Apache Storm,” Apache Software Foundation, storm.apache.org.

18 “Apache Spark Streaming,” Apache Software Foundation, spark.apache.org.

19 “Apache Flink,” Apache Software Foundation, flink.apache.org.

Figure 1-28. Apache Kafka is a good implementation of event streams,
and tools like Kafka Streams or Apache Samza can be used to process
those streams.

I would definitely recommend Kafka as a system for high-
throughput reliable event streams. When you want to write code to
process those events, you can either use Kafka’s client libraries
directly, or you can use one of several frameworks (Figure 1-29):
Samza,16 Storm,17 Spark Streaming18 and Flink19 are the most popu‐
lar. Besides message processing, these frameworks also include tools
for deploying a processing job to a cluster of machines and schedul‐
ing its tasks.

32 | Chapter 1: Events and Stream Processing

http://samza.apache.org
http://storm.apache.org
http://spark.apache.org/streaming/
https://flink.apache.org

20 “Comparison Introduction,” Apache Samza 0.8 Documentation, samza.apache.org, 3

April 2015.

21 Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, et al.: “TelegraphCQ: Contin‐

uous Dataflow Processing for an Uncertain World,” at 1st Biennial Conference on Inno‐

vative Data Systems Research (CIDR), January 2003.

22 Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, et al.: “The Design of the Borealis

Stream Processing Engine,” at 2nd Biennial Conference on Innovative Data Systems

Research (CIDR), November 2004.

Figure 1-29. List of distributed stream processing frameworks.

There are interesting design differences (pros and cons) between
these tools. In this report we will not go into the details of stream
processing frameworks and their APIs—you can find a detailed
comparison in the Samza documentation.20 Instead, in this report
we focus on the conceptual foundations that underpin all stream
processing systems.

Today’s distributed stream processing systems have their roots in
stream processing research from the early 2000s (TelegraphCQ,21

Borealis,22 and so on), which originated from a relational database
background. Just as NoSQL datastores stripped databases down to a
minimal feature set, modern stream processing systems look quite
stripped-down compared to the earlier research.

Tools: Putting Ideas into Practice | 33

http://samza.apache.org/learn/documentation/0.9/comparisons/introduction.html
http://www.cidrdb.org/cidr2003/program/p24.pdf
http://www.cidrdb.org/cidr2003/program/p24.pdf
http://cs.brown.edu/research/borealis/public/publications/cidr05.pdf
http://cs.brown.edu/research/borealis/public/publications/cidr05.pdf

23 Jay Kreps: “But the multi-tenancy thing is actually really really hard,” tweetstorm, twit‐

ter.com, 31 October 2014.

CEP, Actors, Reactive, and More
Contemporary distributed stream processing frameworks (Kafka
Streams, Samza, Storm, Spark Streaming, Flink) are mostly con‐
cerned with low-level matters: how to scale processing across multi‐
ple machines, how to deploy a job to a cluster, how to handle faults
(crashes, machine failures, network outages), and how to achieve
reliable performance in a multitenant environment.23 The APIs they
provide are often quite low-level (e.g., a callback that is invoked for
every message). They look much more like MapReduce and less like
a database, although there is work in progress to provide high-level
query languages such as streaming SQL.

Figure 1-30. Stream query engines provide higher-level abstractions
than stream processing frameworks.

There is also some existing work on high-level query languages for
stream processing, and CEP is especially worth mentioning
(Figure 1-30). It originated in 1990s research on event-driven simu‐

34 | Chapter 1: Events and Stream Processing

https://twitter.com/jaykreps/status/528235702480142336

24 David C Luckham: “What’s the Difference Between ESP and CEP?,” complexe‐

vents.com, 1 August 2006.

25 “Esper: Event Processing for Java,” EsperTech Inc., espertech.com.

26 “Elasticsearch 1.7 Reference: Percolator,” Elasticsearch Global BV, elastic.co.

27 “Luwak – stored query engine from Flax,” Flax, github.com.

lation.24 Many CEP products are commercial, expensive enterprise
software, although Esper25 has an open source version. (Esper is a
library that you can run inside a distributed stream processing
framework, but it does not provide distributed query execution.)

With CEP, you write queries or rules that match certain patterns in
the events. They are comparable to SQL queries (which describe
what results you want to return from a database), except that the
CEP engine continually searches the stream for sets of events that
match the query and notifies you (generates a “complex event”)
whenever a match is found. This is useful for fraud detection or
monitoring business processes, for example.

For use cases that can be easily described in terms of a CEP query
language, such a high-level language is much more convenient than
a low-level event processing API. On the other hand, a low-level
API gives you more freedom, allowing you to do a wider range of
things than a query language would let you do. Also, by focusing
their efforts on scalability and fault tolerance, stream processing
frameworks provide a solid foundation upon which query languages
can be built.

Another idea for high-level querying is doing full-text search on
streams, whereby you register a search query in advance and then
are notified whenever an event matches your query. For example,
Elasticsearch Percolator26 provides this as a service, and Luwak27

implements full-text search on streams as an embeddable library.

CEP, Actors, Reactive, and More | 35

http://www.complexevents.com/2006/08/01/what%E2%80%99s-the-difference-between-esp-and-cep/
http://www.espertech.com/products/esper.php
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-percolate.html
https://github.com/flaxsearch/luwak

28 “Akka,” Typesafe Inc., akka.io.

29 “Microsoft Project Orleans,” Microsoft Research, dotnet.github.io.

30 “Erlang/OTP 18 Documentation,” Ericsson AB, erlang.org.

31 Matt Welsh: “A Retrospective on SEDA,” matt-welsh.blogspot.co.uk, 26 July 2010.

Figure 1-31. Lots of other people also seem to think that events are a
good idea.

Finally, there are a lot of other ideas that are somehow related to
event streams (Figure 1-31). Here is a brief summary:

• Distributed actor frameworks such as Akka,28 Orleans,29 and
Erlang OTP30 are also based on streams of immutable events/
messages. However, they are primarily a mechanism for pro‐
gramming concurrent systems, less a mechanism for data man‐
agement. In principle, you could build a distributed stream
processing framework on top of actors, but it’s worth looking
carefully at the fault-tolerance guarantees and failure modes of
these systems: many don’t provide durability, for example.
SEDA architectures31 have some similarities to actors.

36 | Chapter 1: Events and Stream Processing

http://akka.io
http://dotnet.github.io/orleans/
http://www.erlang.org/doc/
http://matt-welsh.blogspot.co.uk/2010/07/retrospective-on-seda.html

32 Jonas Bonér, Dave Farley, Roland Kuhn, and Martin Thompson: “The Reactive Mani‐

festo v2.0,” reactivemanifesto.org, 16 September 2014.

33 “ReactiveX,” reactivex.io.

• There’s a lot of buzz around “reactive”, which seems to encom‐
pass a quite loosely defined set of ideas.32 My impression is that
there is some good work happening in dataflow languages,
ReactiveX and functional reactive programming (FRP), which I
see as mostly about bringing event streams to the user interface
(i.e., updating the user interface when some underlying data
changes).33 This is a natural counterpart to event streams in the
data backend (we touch on it in Chapter 5).

• Finally, change data capture (CDC) means using an existing
database in the familiar way, but extracting any inserts, updates,
and deletes into a stream of data change events that other appli‐
cations can consume. We discuss this in detail in Chapter 3.

I hope this chapter helped you make some sense of the many facets
of stream processing. In Chapter 2, we dig deep into the idea of a
“log,” which is a particularly good way of implementing streams.

CEP, Actors, Reactive, and More | 37

http://www.reactivemanifesto.org
http://www.reactivemanifesto.org
http://reactivex.io

CHAPTER 2

Using Logs to Build a Solid Data
Infrastructure

In Chapter 1, we explored the idea of representing data as a series of
events. This idea applies not only if you want to keep track of things
that happened (e.g., page views in an analytics application), but we
also saw that events work well for describing changes to a database
(event sourcing).

However, so far we have been a bit vague about what the stream
should look like. In this chapter, we will explore the answer in detail:
a stream should be implemented as a log; that is, an append-only
sequence of events in a fixed order. (This is what Apache Kafka
does.)

It turns out that the ordering of events is really important, and many
systems (such as AMQP or JMS message queues) do not provide a
fixed ordering. In this chapter, we will go on a few digressions out‐
side of stream processing, to look at logs appearing in other places:
in database storage engines, in database replication, and even in dis‐
tributed consensus systems.

Then, we will take what we have learned from those other areas of
computing and apply it to stream processing. Those lessons will
help us build applications that are operationally robust, reliable, and
that perform well.

But before we get into logs, we will begin this chapter with a moti‐
vating example: the sprawling complexity of data integration in a

39

large application. If you work on a non-trivial application—some‐
thing with more than just one database—you’ll probably find these
ideas very useful. (Spoiler: the solution involves a log.)

Case Study: Web Application Developers
Driven to Insanity
To begin, let’s assume that you’re working on a web application. In
the simplest case, it probably has the stereotypical three-tier archi‐
tecture (Figure 2-1): you have some clients (which may be web
browsers, or mobile apps, or both), which make requests to a web
application running on your servers. The web application is where
your application code or business logic lives.

Figure 2-1. One web app, one database: life is simple.

Whenever the application wants to remember something for the
future, it stores it in a database. Accordingly, whenever the applica‐
tion wants to look up something that it stored previously, it queries
the database. This approach is simple to understand and works
pretty well.

40 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

Figure 2-2. Things usually don’t stay so simple for long.

However, things usually don’t stay so simple for long (Figure 2-2).
Perhaps you get more users, making more requests, your database
becomes too slow, and you add a cache to speed it up—perhaps
memcached or Redis, for example. Perhaps you need to add full-text
search to your application, and the basic search facility built into
your database is not good enough, so you set up a separate indexing
service such as Elasticsearch or Solr.

Perhaps you need to do some graph operations that are not efficient
on a relational or document database—for example for social fea‐
tures or recommendations—so you add a separate graph index to
your system. Perhaps you need to move some expensive operations
out of the web request flow and into an asynchronous background
process, so you add a message queue that lets you send jobs to your
background workers.

And it gets worse... (Figure 2-3)

Case Study: Web Application Developers Driven to Insanity | 41

Figure 2-3. As the features and the business requirements of an appli‐
cation grow, we see a proliferation of different tools being used in com‐
bination with one another.

By now, other parts of the system are becoming slow again, so you
add another cache. More caches always make things faster, right?
But now you have a lot of systems and services, so you need to add
metrics and monitoring so that you can see whether they are
actually working. Of course, the metrics system is another system in
its own right.

Next, you want to send notifications, such as email or push notifica‐
tions to your users, so you chain a notification system off the side of
the job queue for background workers, and perhaps it needs some
kind of database of its own to keep track of stuff. However, now
you’re generating a lot of data that needs to be analyzed, and you
can’t have your business analysts running big expensive queries on
your main database, so you add Hadoop or a data warehouse and
load the data from the database into it.

Now that your business analytics are working, you find that your
search system is no longer keeping up... but you realize that because
you have all the data in HDFS anyway, you could actually build your
search indexes in Hadoop and push them out to the search servers.

42 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

1 Michael Stonebraker and Uğur Çetintemel: “‘One Size Fits All’: An Idea Whose Time

Has Come and Gone,” at 21st International Conference on Data Engineering (ICDE),

April 2005.

All the while, the system just keeps growing more and more compli‐
cated.

The result is complete and utter insanity (Figure 2-4).

Figure 2-4. A system with many interdependent components becomes
very complex and difficult to manage and understand.

How did we get to that state? How did we end up with such com‐
plexity, where everything is calling everything else and nobody
understands what is going on?

It’s not that any particular decision we made along the way was bad.
There is no one database or tool that can do everything that our
application requires.1 We use the best tool for the job, and for an
application with a variety of features that implies using a variety of
tools.

Also, as a system grows, you need a way of decomposing it into
smaller components in order to keep it manageable. That’s what
microservices are all about (see Chapter 4). But, if your system

Case Study: Web Application Developers Driven to Insanity | 43

https://cs.brown.edu/~ugur/fits_all.pdf
https://cs.brown.edu/~ugur/fits_all.pdf

becomes a tangled mess of interdependent components, that’s not
manageable either.

Simply having many different storage systems is not a problem in
and of itself: if they were all independent from one another, it
wouldn’t be a big deal. The real trouble here is that many of them
end up containing the same data, or related data, but in different
form (Figure 2-5).

Figure 2-5. Denormalization, caching, indexes, and aggregations are
various kinds of redundant data: keeping the same data in a different
representation in order to speed up reads.

For example, the documents in your full-text indexes are typically
also stored in a database because search indexes are not intended to
be used as systems of record. The data in your caches is a duplicate
of data in some database (perhaps joined with other data, or ren‐
dered into HTML, or something)—that’s the definition of a cache.

Also, denormalization is just another form of duplicating data, simi‐
lar to caching—if some value is too expensive to recompute on
reads, you can store that value somewhere, but now you need to also
keep it up-to-date when the underlying data changes. Materialized
aggregates, such as those in the analytics example in Chapter 1, are
again a form of redundant data.

44 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

I’m not saying that this duplication of data is bad—far from it. Cach‐
ing, indexing, and other forms of redundant data are often essential
for achieving good performance on reads. However, keeping the
data synchronized between all these various different representa‐
tions and storage systems becomes a real challenge (Figure 2-6).

Figure 2-6. The problem of data integration: keeping data systems
synchronized.

For lack of a better term, I’m going to call this the problem of “data
integration.” With that I really just mean making sure that the data
ends up in all the right places. Whenever a piece of data changes in
one place, it needs to change correspondingly in all the other places
where there is a copy or derivative of that data.

So, how do we keep these different data systems synchronized?
There are a few different techniques.

Dual Writes
A popular approach is called dual writes (Figure 2-7). The dual-
writes technique is simple: it’s the responsibility of your application
code to update data in all the appropriate places. For example, if a
user submits some data to your web app, there’s some code in the
web app that first writes the data to your database, then invalidates

Case Study: Web Application Developers Driven to Insanity | 45

or refreshes the appropriate cache entries, then re-indexes the docu‐
ment in your full-text search index, and so on. (Or, maybe it does
those things in parallel—that doesn’t matter for our purposes.)

Figure 2-7. With dual writes, your application code is responsible for
writing data to all the appropriate places.

The dual-writes approach is popular because it’s easy to build, and it
more or less works at first. But I’d like to argue that it’s a really bad
idea, because it has some fundamental problems. The first problem
is race conditions.

Figure 2-8 shows two clients making dual writes to two datastores.
Time flows from left to right, following the black arrows.

46 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

Figure 2-8. Timing diagram showing two different clients concurrently
writing to the same key, using dual writes.

Here, the first client (teal) is setting the key X to be some value A.
They first make a request to the first datastore—perhaps that’s the
database, for example—and set X=A. The datastore responds by say‐
ing the write was successful. Then, the client makes a request to the
second datastore—perhaps that’s the search index—and also sets
X=A.

Simultaneously, another client (red) is also active. It wants to write
to the same key X, but it wants to set the key to a different value B.
The client proceeds in the same way: it first sends a request, X=B, to
the first datastore and then sends a request, X=B, to the second data‐
store.

All of these writes are successful. However, look at what value is
stored in each database over time (Figure 2-9).

Case Study: Web Application Developers Driven to Insanity | 47

Figure 2-9. A race condition with dual writes leads to perpetual incon‐
sistency between two datastores.

In the first datastore, the value is first set to A by the teal client, and
then set to B by the red client, so the final value is B.

In the second datastore, the requests arrive in a different order: the
value is first set to B and then set to A, so the final value is A. Now,
the two datastores are inconsistent with each other, and they will
permanently remain inconsistent until sometime later when some‐
one comes and overwrites X again.

The worst thing is this: you probably won’t even notice that your
database and your search indexes have become inconsistent because
no errors occurred. You’ll probably only realize it six months later,
while you’re doing something completely different, that your data‐
base and your indexes don’t match up, and you’ll have no idea how
that could have happened. This is not a problem of eventual consis‐
tency—it’s perpetual inconsistency.

That alone should be enough to put anyone off dual writes.

But wait, there’s more...

48 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

Denormalized data

Let’s look at denormalized data. Suppose, for example, that you have
an application with which users can send each other messages or
emails, and you have an inbox for each user. When a new message is
sent, you want to do two things: add the message to the list of mes‐
sages in the user’s inbox, and also increment the user’s count of
unread messages (Figure 2-10).

Figure 2-10. A counter of unread messages, which needs to be kept up-
to-date when a new message comes in.

You keep a separate counter because you display it in the user inter‐
face all the time, and it would be too slow to query the number of
unread messages by scanning over the list of messages every time
you need to display the number. However, this counter is denormal‐
ized information: it’s derived from the actual messages in the inbox,
and whenever the messages change, you also need to update the
counter accordingly.

Let’s keep this one simple: one client, one database. Think about
what happens over time: first, the client inserts the new message into
the recipient’s inbox. Then, the client makes a request to increment
the unread counter.

Case Study: Web Application Developers Driven to Insanity | 49

2 Martin Kleppmann: “Eventual consistency? More like perpetual inconsistency,” twit‐

ter.com, 17 November 2014.

However, just in that moment, something goes wrong—perhaps the
database goes down, or a process crashes, or the network is inter‐
rupted, or someone unplugs the wrong network cable (Figure 2-11).
Whatever the reason, the update to the unread counter fails.

Figure 2-11. One write succeeds; the other write fails. What now?

Now, your database is inconsistent: the message has been added to
the inbox, but the counter hasn’t been updated. And unless you peri‐
odically recompute all your counter values from scratch, or undo
the insertion of the message, it will forever remain inconsistent.
Such problems are not hypothetical—they do occur in practice.2

Of course, you could argue that this problem was solved decades ago
by transactions: atomicity, the “A” in “ACID,” means that if you make
several changes within one transaction, they either all happen or
none happen (Figure 2-12).

50 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

https://twitter.com/martinkl/status/534383207593308160

3 Henry Robinson: “Consensus Protocols: Two-Phase Commit,” the-paper-trail.org, 27

November 2008.

Figure 2-12. Transaction atomicity means that if you make several
changes, they either all happen or none happen.

The purpose of atomicity is to solve precisely this issue—if some‐
thing goes wrong during your writes, you don’t need to worry about
a half-finished set of changes making your data inconsistent.

The traditional approach of wrapping the two writes in a transaction
works fine in databases that support it, but many of the new genera‐
tion of databases (“NoSQL”) don’t, so you’re on your own.

Also, if the denormalized information is stored in a different data‐
base—for example, if you keep your emails in a database but your
unread counters in Redis—you lose the ability to tie the writes
together into a single transaction. If one write succeeds and the
other fails, you’re going to have a difficult time clearing up the
inconsistency.

Some systems support distributed transactions, based on 2-phase
commit, for example.3 However, many datastores nowadays don’t
support it, and even if they did, it’s not clear whether distributed

Case Study: Web Application Developers Driven to Insanity | 51

http://the-paper-trail.org/blog/consensus-protocols-two-phase-commit/

4 Pat Helland: “Life beyond Distributed Transactions: an Apostate’s Opinion,” at 3rd

Biennial Conference on Innovative Data Systems Research (CIDR), pages 132–141, Janu‐

ary 2007.

transactions are a good idea in the first place.4 So, we must assume
that with dual writes the application needs to deal with partial fail‐
ure, which is difficult.

Making Sure Data Ends Up in the Right Places
So, back to our original question: how do we make sure that all the
data ends up in all the right places (Figure 2-6)? How do we get a
copy of the same data to appear in several different storage systems,
and keep them all consistently synchronized as the data changes?

As we saw, dual writes isn’t the solution, because it can introduce
inconsistencies due to race conditions and partial failures. Then,
how can we do better?

I’m a fan of stupidly simple solutions. The great thing about simple
solutions is that you have a chance of understanding them and con‐
vincing yourself that they’re correct. In this case, the simplest solu‐
tion I can see is to store all your writes in a fixed order, and apply
them in that fixed order to the various places they need to go
(Figure 2-13).

52 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

http://www-db.cs.wisc.edu/cidr/cidr2007/papers/cidr07p15.pdf

Figure 2-13. A totally ordered, persistently stored sequence of events,
also known as a log.

If you do all your writes sequentially, without any concurrency, you
have removed the potential for race conditions. Moreover, if you
write down the order in which you make your writes, it becomes
much easier to recover from partial failures, as I will show later.

So, the stupidly simple solution that I propose looks like this: when‐
ever anyone wants to write some data, we append that write to the
end of a sequence of records. That sequence is totally ordered, it’s
append-only (we never modify existing records, only ever add new
records at the end), and it’s persistent (we store it durably on disk).

Figure 2-13 shows an example of such a data structure: moving left
to right, it records that we first wrote X=5, then we wrote Y=8, then
we wrote X=6, and so on. That data structure has a name: we call it a
log.

The Ubiquitous Log
The interesting thing about logs is that they pop up in many differ‐
ent areas of computing. Although it might seem like a stupidly sim‐
ple idea that can’t possibly work, it actually turns out to be
incredibly powerful.

The Ubiquitous Log | 53

When I say “logs”, the first thing you probably think of is textual
application logs of the style you might get from Log4j or Syslog.
Sure, that’s one kind of log, but when I talk about logs here I mean
something more general. I mean any kind of data structure of totally
ordered records that is append-only and persistent—any kind of
append-only file.

How Logs Are Used in Practice
Throughout the rest of this chapter, I’ll run through a few examples
of how logs are used in practice (Figure 2-14). It turns out that logs
are already present in the databases and systems you likely use every
day. When we understand how logs are used in various different sys‐
tems, we’ll be in a better position to understand how they can help
us solve the problem of data integration.

Figure 2-14. Four areas of computing that use logs; we will look at each
of them in turn.

The first area we’ll discuss is the internals of database storage
engines.

54 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

5 Goetz Graefe: “Modern B-Tree Techniques,” Foundations and Trends in Databases, vol‐

ume 3, number 4, pages 203–402, August 2011. doi:10.1561/1900000028

1) Database Storage Engines
Do you remember B-Trees5 from your algorithms classes
(Figure 2-15)? They are a very widely used data structure for storage
engines—almost all relational databases, and many non-relational
databases, use them.

Figure 2-15. The upper levels of a B-Tree.

To summarize briefly: a B-Tree consists of pages, which are fixed-
size blocks on disk, typically 4 or 8 KB in size. When you want to
look up a particular key, you start with one page, which is at the root
of the tree. The page contains pointers to other pages, and each
pointer is tagged with a range of keys. For example, if your key is
between 0 and 100, you follow the first pointer; if your key is
between 100 and 300, you follow the second pointer; and so on.

The pointer takes you to another page, which further breaks down
the key range into sub-ranges. Eventually you end up at the page
containing the particular key for which you’re looking.

How Logs Are Used in Practice | 55

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.219.7269
http://dx.doi.org/10.1561/1900000028

Now what happens if you need to insert a new key/value pair into a
B-Tree? You have to insert it into the page whose key range contains
the key you’re inserting. If there is enough spare space in that page,
no problem. But, if the page is full, it needs to be split into two sepa‐
rate pages (Figure 2-16).

Figure 2-16. Splitting a full B-Tree page into two sibling pages (red out‐
line). Page pointers in the parent (black outline, red fill) need to be
updated, too.

When you split a page, you need to write at least three pages to disk:
the two pages that are the result of the split, and the parent page (to
update the pointers to the split pages). However, these pages might
be stored at various different locations on disk.

This raises the question: what happens if the database crashes (or
the power goes out, or something else goes wrong) halfway through
the operation, after only some of those pages have been written to
disk? In that case, you have the old (pre-split) data in some pages,
and the new (post-split) data in other pages, and that’s bad news.
You’re most likely going to end up with dangling pointers or pages
to which nobody is pointing. In other words, you’ve got a corrupted
index.

56 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

6 C Mohan, Don Haderle, Bruce G Lindsay, Hamid Pirahesh, and Peter Schwarz:

“ARIES: A Transaction Recovery Method Supporting Fine-Granularity Locking and

Partial Rollbacks Using Write-Ahead Logging,” ACM Transactions on Database Systems

(TODS), volume 17, number 1, pages 94–162, March 1992. doi:10.1145/128765.128770

7 Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil: “The Log-

Structured Merge-Tree (LSM-Tree),” Acta Informatica, volume 33, number 4, pages

351–385, June 1996. doi:10.1007/s002360050048

8 Matteo Bertozzi: “Apache HBase I/O – HFile,” blog.cloudera.com, 29 June 2012.

9 Jonathan Hui: “How Cassandra Read, Persists Data and Maintain Consistency,” jona‐

thanhui.com.

10 Justin Sheehy and David Smith: “Bitcask: A Log-Structured Hash Table for Fast Key/

Value Data,” Basho Technologies, April 2010.

Now, storage engines have been doing this for decades, so how do
they make B-Trees reliable? The answer is that they use a write-
ahead log.6

Write-ahead log

A write-ahead log (WAL) is a particular kind of log. Whenever the
storage engine wants to make any kind of change to the B-Tree, it
must first write the change that it intends to make to the WAL,
which is an append-only file on disk. Only after the change has been
written to the WAL, and durably written to disk, is the storage
engine allowed to modify the actual B-Tree pages on disk.

This makes the B-Tree reliable: if the database crashes while data
was being appended to the WAL, no problem, because the B-Tree
hasn’t been touched yet. And if it crashes while the B-Tree is being
modified, no problem, because the WAL contains the information
about what changes were about to happen. When the database
comes back up after the crash, it can use the WAL to repair the B-
Tree and get it back into a consistent state.

This has been our first example to show that logs are a really neat
idea.

Log-structured storage

Storage engines didn’t stop with B-Trees. Some clever folks realized
that if we’re writing everything to a log anyway, we might as well use
the log as the primary storage medium. This is known as log-
structured storage,7 which is used in HBase8 and Cassandra,9 and a
variant appears in Riak.10

How Logs Are Used in Practice | 57

http://db.csail.mit.edu/madden/html/aries.pdf
http://db.csail.mit.edu/madden/html/aries.pdf
http://dx.doi.org/10.1145/128765.128770
http://www.cs.umb.edu/~poneil/lsmtree.pdf
http://www.cs.umb.edu/~poneil/lsmtree.pdf
http://dx.doi.org/10.1007/s002360050048
http://blog.cloudera.com/blog/2012/06/hbase-io-hfile-input-output/
https://web.archive.org/web/20150809131308/http://jonathanhui.com/how-cassandra-read-persists-data-and-maintain-consistency
http://basho.com/wp-content/uploads/2015/05/bitcask-intro.pdf
http://basho.com/wp-content/uploads/2015/05/bitcask-intro.pdf

Figure 2-17. In log-structured storage, writes are appended to log seg‐
ments, and periodically merged/compacted in the background.

In log-structured storage we don’t always keep appending to the
same file, because it would become too large and it would be too dif‐
ficult to find the key we’re looking for. Instead, the log is broken into
segments, and from time to time the storage engine merges segments
and discards duplicate keys, as illustrated in Figure 2-17. Segments
can also be internally sorted by key, which can make it easier to find
the key you’re looking for and also simplifies merging. However,
these segments are still logs: they are only written sequentially, and
they are immutable after they have been written.

As you can see, logs play an important role in storage engines.

2) Database Replication
Let’s move on to the second example where logs are used: database
replication.

Replication is a feature that you find in many databases: it allows
you to keep a copy of the same data on several different nodes. That
can be useful for spreading the load, and it also means that if one
node dies, you can failover to another one.

58 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

There are a few different ways of implementing replication, but a
common choice is to designate one node as the leader (also known
as primary or master), and the other replicas as followers (also
known as standby or slave) (Figure 2-18). I don’t like the master/
slave terminology, so I’m going to stick with leader/follower.

Figure 2-18. In leader-based replication, the leader processes writes,
and uses a replication log to tell followers about writes.

Whenever a client wants to write something to the database, it needs
to talk to the leader. Read-only clients can use either the leader or
the follower (although the follower is typically asynchronous, so it
might have slightly out-of-date information if the latest writes
haven’t yet been applied).

When clients write data to the leader, how does that data get to the
followers? Big surprise: they use a log! They use a replication log,
which may in fact be the same as the write-ahead log (this is what
Postgres does, for example), or it may be a separate replication log
(MySQL does this).

The replication log works as follows: whenever some data is written
to the leader, it is also appended to the replication log. The followers
read that log in the order in which it was written, and apply each of
the writes to their own copy of the data. As a result, each follower

How Logs Are Used in Practice | 59

11 Jay Kreps: “The Log: What every software engineer should know about real-time data’s

unifying abstraction,” engineering.linkedin.com, 16 December 2013.

processes the same writes in the same order as the leader, and thus it
ends up with a copy of the same data (Figure 2-19).

Figure 2-19. The follower applies writes in the order in which they
appear in the replication log.

Even if the writes happen concurrently on the leader, the log still
contains the writes in a total order. Thus, the log actually removes
the concurrency from the writes—it “squeezes all the non-
determinism out of the stream of writes,”11 and on the follower
there’s no doubt about the order in which the writes happened.

So, what about the dual-writes race condition we discussed earlier
(Figure 2-9)?

This race condition cannot happen with leader-based replication,
because clients don’t write directly to the followers. The only writes
processed by followers are the ones they receive from the replication
log. And because the log fixes the order of those writes, there is no
ambiguity regarding which one happened first.

60 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying

Moreover, all followers are guaranteed to see the log in the same
order, so if two overwrites occur in quick succession, that’s no prob‐
lem: all followers apply writes in that same order, and as a result they
all end up in the same final state.

But, what about the second problem with dual writes that we dis‐
cussed earlier, namely that one write could succeed and another
could fail (Figure 2-11)? This could still happen: a follower could
successfully process the first write from a transaction, but fail to
process the second write from the transaction (perhaps because the
disk is full or the network is interrupted, as illustrated in
Figure 2-20).

Figure 2-20. A network interruption causes the follower to stop apply‐
ing writes from the log, but it can easily resume replication when the
network is repaired.

If the network between the leader and the follower is interrupted,
the replication log cannot flow from the leader to the follower. This
could lead to an inconsistent replica, as we discussed previously.
How does database replication recover from such errors and avoid
becoming inconsistent?

Notice that the log has a very nice property: because the leader only
ever appends to it, we can give each record in the log a sequential

How Logs Are Used in Practice | 61

12 Douglas Adams: The Restaurant at the End of the Universe. Pan Books, 1980. ISBN:

9780330262132

number that is always increasing (which we might call log position or
offset). Furthermore, followers only process it in sequential order
(from left to right; i.e., in order of increasing log position), so we can
describe a follower’s current state with a single number: the position
of the latest record it has processed.

When you know a follower’s current position in the log, you can be
sure that all the prior records in the log have already been processed,
and none of the subsequent records have been processed.

This is great, because it makes error recovery quite simple. If a fol‐
lower becomes disconnected from the leader, or it crashes, the fol‐
lower just needs to store the log position up to which it has
processed the replication log. When the follower recovers, it recon‐
nects to the leader, and asks for the replication log beginning from
the last offset that it previously processed. Thus, the follower can
catch up on all the writes that it missed while it was disconnected,
without losing any data or receiving duplicates.

The fact that the log is totally ordered makes this recovery much
simpler than if you had to keep track of every write individually.

3) Distributed Consensus
The third example of logs in practice is in a different area: dis‐
tributed consensus.

Achieving consensus is one of the well-known and often-discussed
problems in distributed systems. It is important, but it is also sur‐
prisingly difficult to solve.

An example of consensus in the real world would be trying to get a
group of friends to agree on where to go for lunch (Figure 2-21).
This is a distinctive feature of a sophisticated civilization12 and can
be a surprisingly difficult problem, especially if some of your friends
are easily distractible (so they don’t always respond to your ques‐
tions) or if they are fussy eaters.

62 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

13 Kyle Kingsbury: “Call me maybe: MongoDB,” aphyr.com, 18 May 2013.

Figure 2-21. Consensus is useful if you don’t want to stay hungry, and
don’t want to lose data.

Closer to our usual domain of computers, an example of where you
might want consensus is in a distributed database system: for
instance, you might require all your database nodes to agree on
which node is the leader for a particular partition (shard) of the
database.

It’s pretty important that they all agree on whom the leader is: if two
different nodes both think they are leader, they might both accept
writes from clients. Later, when one of them finds out that it was
wrong and it wasn’t leader after all, the writes that it accepted might
be lost. This situation is known as split brain, and it can cause nasty
data loss.13

How Logs Are Used in Practice | 63

https://aphyr.com/posts/284-call-me-maybe-mongodb

14 Tushar Deepak Chandra, Robert Griesemer, and Joshua Redstone: “Paxos Made Live -

An Engineering Perspective,” at 26th ACM Symposium on Principles of Distributed

Computing (PODC), June 2007.

15 Flavio P Junqueira, Benjamin C Reed, and Marco Serafini: “Zab: High-performance

broadcast for primary-backup systems,” at 41st IEEE International Conference on

Dependable Systems and Networks (DSN), pages 245–256, June 2011. doi:10.1109/DSN.

2011.5958223

16 “Apache ZooKeeper,” Apache Software Foundation, zookeeper.apache.org.

17 Diego Ongaro and John K Ousterhout: “In Search of an Understandable Consensus

Algorithm (Extended Version),” at USENIX Annual Technical Conference (USENIX

ATC), June 2014.

18 Robbert van Renesse, Nicolas Schiper, and Fred B Schneider: “Vive La Différence:

Paxos vs. Viewstamped Replication vs. Zab,” IEEE Transactions on Dependable and

Secure Computing, volume 12, number 4, pages 472–484, September 2014. doi:10.1109/

TDSC.2014.2355848

19 Heidi Howard, Malte Schwarzkopf, Anil Madhavapeddy, and Jon Crowcroft: “Raft

Refloated: Do We Have Consensus?,” ACM SIGOPS Operating Systems Review, volume

49, number 1, pages 12–21, January 2015. doi:10.1145/2723872.2723876

There are a few different algorithms for implementing consensus.
Paxos14 is perhaps the most well-known, but there are also Zab15

(used by ZooKeeper16), Raft,17 and others.18 These algorithms are
quite tricky and have some non-obvious subtleties.19 In this report, I
will very briefly sketch one part of the Raft algorithm (Figure 2-22).

64 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

http://www.read.seas.harvard.edu/~kohler/class/08w-dsi/chandra07paxos.pdf
http://www.read.seas.harvard.edu/~kohler/class/08w-dsi/chandra07paxos.pdf
http://web.stanford.edu/class/cs347/reading/zab.pdf
http://web.stanford.edu/class/cs347/reading/zab.pdf
http://dx.doi.org/10.1109/DSN.2011.5958223
http://dx.doi.org/10.1109/DSN.2011.5958223
http://zookeeper.apache.org/
http://ramcloud.stanford.edu/raft.pdf
http://ramcloud.stanford.edu/raft.pdf
http://arxiv.org/abs/1309.5671
http://arxiv.org/abs/1309.5671
http://dx.doi.org/10.1109/TDSC.2014.2355848
http://dx.doi.org/10.1109/TDSC.2014.2355848
http://www.cl.cam.ac.uk/~ms705/pub/papers/2015-osr-raft.pdf
http://www.cl.cam.ac.uk/~ms705/pub/papers/2015-osr-raft.pdf
http://dx.doi.org/10.1145/2723872.2723876

Figure 2-22. Raft consensus protocol: a value X=8 is proposed, and
nodes vote on it.

In a consensus system, there are a number of nodes (three in
Figure 2-22) which are in charge of agreeing what the value of a par‐
ticular variable should be. A client proposes a value, for example
X=8 (which might mean that node X is the leader for partition 8), by
sending it to one of the Raft nodes. That node collects votes from
the other nodes. If a majority of nodes agree that the value should be
X=8, the first node is allowed to commit the value.

When that value is committed, what happens? In Raft, that value is
appended to the end of a log. Thus, what Raft is doing is not just
getting the nodes to agree on one particular value, it’s actually build‐
ing up a log of values that have been agreed over time. All Raft
nodes are guaranteed to have exactly the same sequence of commit‐
ted values in their log, and clients can consume this log
(Figure 2-23).

How Logs Are Used in Practice | 65

20 Tushar Deepak Chandra and Sam Toueg: “Unreliable Failure Detectors for Reliable

Distributed Systems,” Journal of the ACM, volume 43, number 2, pages 225–267, March

1996. doi:10.1145/226643.226647

Figure 2-23. The Raft protocol provides consensus not just for a single
value, but a log of agreed values.

After the newly agreed value has been committed, appended to the
log, and replicated to the other nodes, the client that originally pro‐
posed the value X=8 is sent a response saying that the system suc‐
ceeded in reaching consensus, and that the proposed value is now
part of the Raft log.

(As a theoretical aside, the problems of consensus and atomic broad‐
cast—that is, creating a log with exactly-once delivery—are reduci‐
ble to each other.20 This means Raft’s use of a log is not just a
convenient implementation detail, but also reflects a fundamental
property of the consensus problem it is solving.)

4) Kafka
We’ve seen that logs are a recurring theme in surprisingly many
areas of computing: storage engines, database replication, and con‐
sensus. As the fourth and final example, we’ll cover Apache Kafka—

66 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

http://courses.csail.mit.edu/6.852/08/papers/CT96-JACM.pdf
http://courses.csail.mit.edu/6.852/08/papers/CT96-JACM.pdf
http://dx.doi.org/10.1145/226643.226647

another system that is built around the idea of logs. The interesting
thing about Kafka is that it doesn’t hide the log from you. Rather
than treating the log as an implementation detail, Kafka exposes it to
you so that you can build applications around it.

Figure 2-24. Kafka is typically used as a message broker for publish-
subscribe event streams.

The typical use of Kafka is as a message broker (message queue), as
illustrated in Figure 2-24—so it is somewhat comparable to AMQP
(e.g. RabbitMQ), JMS (e.g. ActiveMQ or HornetQ), and other mes‐
saging systems. Kafka has two types of clients: producers or publish‐
ers (which send messages to Kafka) and consumers or subscribers
(which read the streams of messages in Kafka).

For example, producers can be your web servers or mobile apps, and
the types of messages they send to Kafka might be logging informa‐
tion—that is, events that indicate which user clicked which link at
which point in time. The consumers are various processes that need
to find out about stuff that is happening; for example, to generate
analytics, to monitor for unusual activity, to generate personalized
recommendations for users, and so on.

The thing that makes Kafka interestingly different from other mes‐
sage brokers is that it is structured as a log. In fact, it somewhat

How Logs Are Used in Practice | 67

resembles a log file in the sense of Log4j or Syslog: when a producer
sends a message to Kafka, it is literally appended to the end of a file
on disk. Thus, Kafka’s internal data files are just a sequence of log
messages, as illustrated in Figure 2-25. (While application log files
typically use a newline character to delimit records, Kafka uses a
binary format with checksums and a bit of useful metadata. But the
principle is very similar.)

Figure 2-25. A message in Kafka is appended as a log record to the end
of a file.

If Kafka wrote everything sequentially to a single file, its throughput
would be limited to the sequential write throughput of a disk—
which is perhaps tens of megabytes per second, but that’s not
enough. In order to make Kafka scalable, a stream of messages—a
topic—is split into partitions (Figure 2-26). Each partition is a log,
that is, a totally ordered sequence of messages. However, different
partitions are completely independent from one another, so there is
no ordering guarantee across different partitions. This allows differ‐
ent partitions to be handled on different servers, and so Kafka can
scale horizontally.

68 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

Figure 2-26. Data streams in Kafka are split into partitions.

Each partition is stored on disk and replicated across several
machines, so it is durable and can tolerate machine failure without
data loss. Producing and consuming logs is very similar to what we
saw previously in the context of database replication:

• Every message that is sent to Kafka is appended to the end of a
partition. That is the only write operation supported by Kafka:
appending to the end of a log. It’s not possible to modify past
messages.

• Within each partition, messages have a monotonically increas‐
ing offset (log position). To consume messages from Kafka, a cli‐
ent reads messages sequentially, beginning from a particular
offset, as indicated by the violet arrow in Figure 2-26. That off‐
set is managed by the consumer.

We said previously that Kafka is a message broker somewhat like
AMQP or JMS messaging systems. However, the similarity is super‐
ficial—although they all allow messages to be relayed from produc‐
ers to consumers, the implementation under the hood is very
different.

How Logs Are Used in Practice | 69

The biggest difference is in how the system ensures that consumers
process every message, without dropping messages in case of failure.
With AMQP and JMS-based queues, the consumer acknowledges
every individual message after it has been successfully processed.
The broker keeps track of the acknowledgement status of every mes‐
sage; if a consumer dies without acknowledging a message, the
broker retries delivery, as shown in Figure 2-27.

Figure 2-27. AMQP and JMS message brokers use per-message
acknowledgements to keep track of which messages were successfully
consumed, and redeliver any messages on which the consumer failed.

A consequence of this redelivery behavior is that messages can be
delivered out-of-order: a consumer does not necessarily see messages
in exactly the same order as the producer sent the messages. AMQP
and JMS are designed for situations in which the exact ordering of
messages is not important, and so this redelivery behavior is desira‐
ble.

However, in situations like database replication, the ordering of
messages is critical. For example, in Figure 2-13 it matters that X is
first set to 6 and then to 7, so the final value is 7. If the replication
system were allowed to reorder messages, they would no longer
mean the same thing.

70 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

Kafka maintains a fixed ordering of messages within one partition,
and always delivers those messages in the same order. For that rea‐
son, Kafka doesn’t need to keep track of acknowledgements for
every single message: instead, it is sufficient to keep track of the lat‐
est message offset that a consumer has processed in each partition.
Because the order of messages is fixed, we know that all messages
prior to the current offset have been processed, and all messages
after the current offset have not yet been processed.

Kafka’s model has the advantage that it can be used for database-like
applications where the order of messages is important. On the other
hand, the consumer offset tracking means that a consumer must
process messages sequentially on a single thread. Thus, we can dis‐
tinguish two different families of messaging systems (Figure 2-28).

Figure 2-28. AMQP and JMS are good for job queues; Kafka is good
for event logs.

On the one hand, message brokers that keep track of acknowledge‐
ments for every individual message are well suited for job queues,
where one service needs to ask another service to perform some task
(e.g. sending an email, charging a credit card) on its behalf. For
these situations, the ordering of messages is not important, but it is
important to be able to easily use a pool of threads to process jobs in
parallel and retry any failed jobs.

How Logs Are Used in Practice | 71

On the other hand, Kafka shines when it comes to logging events
(e.g. the fact that a user viewed a web page, or that a customer pur‐
chased some product). When subscribers process these events, it is
normally a very lightweight operation (such as storing the event in a
database, or incrementing some counters), so it is feasible to process
all of the events in one Kafka partition on a single thread. For paral‐
lelism—using multiple threads on multiple machines—Kafka con‐
sumers can simply spread the data across multiple partitions.

Different tools are good for different purposes, and so it is perfectly
reasonable to use both Kafka and a JMS or AMQP messaging sys‐
tem in the same application.

Solving the Data Integration Problem
Let’s return to the data integration problem from the beginning of
this chapter. Suppose that you have a tangle of different datastores,
caches, and indexes that need to be synchronized with each other
(Figure 2-3).

Now that we have seen a bunch of examples of practical applications
of logs, can we use what we’ve learned to figure out how to solve
data integration in a better way?

Figure 2-29. Stop doing dual writes—it leads to inconsistent data.

72 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

21 Jason Sobel: “Scaling Out,” facebook.com, 20 August 2008.

First, we need to stop doing dual writes (Figure 2-29). As discussed,
it’s probably going to make your data inconsistent, unless you have
very carefully thought about the potential race conditions and par‐
tial failures that can occur in your application.

Note this inconsistency isn’t just a kind of “eventual consistency”
that is often quoted in asynchronous systems. What I’m talking
about here is permanent inconsistency—if you’ve written two differ‐
ent values to two different datastores, due to a race condition or par‐
tial failure, that difference won’t simply resolve itself. You’d have to
take explicit actions to search for data mismatches and resolve them
(which is difficult because the data is constantly changing).

What I propose is this: rather than having the application write
directly to the various datastores, the application only appends the
data to a log (such as Kafka). All the different representations of this
data—your databases, your caches,21 your indexes—are constructed
by consuming the log in sequential order (Figure 2-30).

Figure 2-30. Have your application only append data to a log, and all
databases, indexes, and caches constructed by reading sequentially
from the log.

Solving the Data Integration Problem | 73

https://www.facebook.com/note.php?note_id=23844338919&id=9445547199

Each datastore that needs to be kept in sync is an independent con‐
sumer of the log. Every consumer takes the data in the log, one
record at a time, and writes it to its own datastore. The log guaran‐
tees that the consumers all see the records in the same order; by
applying the writes in the same order, the problem of race condi‐
tions is gone. This looks very much like the database replication we
saw earlier!

However, what about the problem of partial failure (Figure 2-11)?
What if one of your stores has a problem and can’t accept writes for
a while?

That problem is also solved by the log: each consumer keeps track of
the log position up to which it has processed the log. When the error
in the datastore-writing consumer is resolved, it can resume pro‐
cessing records in the log from its last position, and catch up on
everything that happened. That way, a datastore won’t lose any
updates, even if it’s offline for a while. This is great for decoupling
parts of your system: even if there is a problem in one datastore, the
rest of the system remains unaffected.

You can even use the log to bootstrap a completely new cache or
index when required. We discuss how this works in Chapter 3.

A log is such a stupidly simple idea: put your writes in a total order
and show them to all consumers in the same order. As we saw, this
simple idea turns out to be very powerful.

Transactions and Integrity Constraints
Just one problem remains: the consumers of the log all update their
datastores asynchronously, so they are eventually consistent. This is
not sufficient if you want to guarantee that your data meets certain
constraints, for example that each username in your database must
be unique, or that a user cannot spend more money than their
account balance.

There are a few approaches for solving this issue. One is called
change data capture, and we will discuss it in Chapter 3. Another,
fairly simple approach is illustrated in Figure 2-31.

74 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

Figure 2-31. Validating that usernames are unique, while still making
all writes through a log.

Suppose that you want to ensure that usernames are unique. You
can check whether a username is already taken when a user tries to
register, but that still allows the race condition of two people trying
to claim the same username at just the same time. Traditionally, in a
relational database, you’d use transactions and a unique constraint
on the username column to prevent this.

When using an architecture in which you can only append to a log,
we can solve this problem as a two-step process. First, when a user
wants to claim a username, you send an event to a “username
claims” stream. This event doesn’t yet guarantee uniqueness; it
merely establishes an ordering of claims. (If you’re using a parti‐
tioned stream like a Kafka topic, you need to ensure that all claims
to the same username go to the same partition. You can do this by
using the username as the Kafka partitioning key.)

A stream processor consumes this stream, checks a database for
uniqueness, writes the new username to the database, and then
writes the outcome (“successfully registered” or “username already
taken”) to a separate “registrations” event stream. This validation
processor can handle one event at a time, in a single-threaded fash‐
ion. To get more parallelism, use more Kafka partitions, each of

Transactions and Integrity Constraints | 75

22 Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, et al.: “Tango: Distributed Data

Structures over a Shared Log,” at 24th ACM Symposium on Operating Systems Principles

(SOSP), pages 325–340, November 2013. doi:10.1145/2517349.2522732

which is processed independently—this approach scales to millions
of events per second. As the messages in each partition are pro‐
cessed serially, there are no concurrency problems, and conflicting
registrations are sure to be found.

How does the user find out whether their username registration was
successful? One option is that the server that submitted the claim
can consume the “registrations” stream, and wait for the outcome of
the uniqueness check to be reported. With a fast stream processor
like Samza, this should only take a few milliseconds.

If conflicts are sufficiently rare, it might even be acceptable to tell
the user “ok” as soon as the claim has been submitted. In the rare
case that their registration failed, you can assign them a temporary
random username, send them an email notification to apologize,
and ask them to choose a new username.

The same approach can be used to make sure that an account bal‐
ance does not go negative. For more complex situations, you can
layer a transaction protocol on top of Kafka, such as the Tango
project from Microsoft Research.22

Conclusion: Use Logs to Make Your
Infrastructure Solid
To close this chapter, I’d like to leave you with a thought experiment
(Figure 2-32).

76 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

http://research.microsoft.com/pubs/199947/Tango.pdf
http://research.microsoft.com/pubs/199947/Tango.pdf
http://dx.doi.org/10.1145/2517349.2522732

Figure 2-32. What if the only way to modify data in your service was
to append an event to a log?

Most APIs we work with have endpoints for both reading and writ‐
ing. In RESTful terms, GET is for reading (i.e., side-effect-free oper‐
ations) and POST, PUT, and DELETE are for writing. These
endpoints for writing are ok if you only have one system you’re writ‐
ing to, but if you have more than one such system, you quickly end
up with dual writes and all their aforementioned problems.

Imagine a system with an API in which you eliminate all the end‐
points for writing. Imagine that you keep all the GET requests but
prohibit any POST, PUT, or DELETE. Instead, the only way you can
send writes into the system is by appending them to a log, and hav‐
ing the system consume that log. (The log must be outside of the
system to accommodate several consumers for the same log.)

For example, imagine a variant of Elasticsearch in which you cannot
write documents through the REST API, but only write documents
by sending them to Kafka. Elasticsearch would internally include a
Kafka consumer that takes documents and adds them to the index.
This would actually simplify some of the internals of Elasticsearch
because it would no longer need to worry about concurrency con‐
trol, and replication would be simpler to implement. And it would

Conclusion: Use Logs to Make Your Infrastructure Solid | 77

23 Pat Helland: “Immutability Changes Everything,” at 7th Biennial Conference on Innova‐

tive Data Systems Research (CIDR), January 2015.

sit neatly alongside other tools that might be consuming the same
log.

In this world view, the log is the authoritative source of what has
happened, and consumers of the log present that information in var‐
ious different ways (Figure 2-33). Similar ideas appear at many dif‐
ferent levels of the stack: from wear leveling on SSDs to database
storage engines and file systems.23 We expand on this idea in Chap‐
ter 5.

Figure 2-33. The idea of using the log as source of truth appears in var‐
ious different places.

This is in fact very similar to the Event Sourcing approach we saw in
Chapter 1, presented slightly differently. The lesson from this chap‐
ter is simple: to make an event-sourced approach work, you need to
fix the ordering of the events using a log, because reordering events
might lead to a different outcome (e.g., a different person getting the
desired username).

In this chapter, we saw that logs are a good way of solving the data
integration problem: ensuring that the same data ends up in several

78 | Chapter 2: Using Logs to Build a Solid Data Infrastructure

http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf

24 Jay Kreps: “The Log: What every software engineer should know about real-time data’s

unifying abstraction,” engineering.linkedin.com, 16 December 2013.

25 Jay Kreps: I Heart Logs. O’Reilly Media, September 2014. ISBN: 978-1-4919-0932-4

26 Jay Kreps: “Putting Apache Kafka to use: A practical guide to building a stream data

platform (Part 1),” confluent.io, 24 February 2015.

27 Jay Kreps: “Putting Apache Kafka to use: A practical guide to building a stream data

platform (Part 2),” confluent.io, 24 February 2015.

different places, without introducing inconsistencies. Kafka is a
good implementation of a log. In the next chapter we will look into
the issue of integrating Kafka with your existing databases, so that
you can begin integrating them in a log-centric architecture.

Further Reading
Many of the ideas in this chapter were previously laid out by Jay
Kreps in his blog post “The Log.”24 An edited version was published
as an ebook by O’Reilly Media.25

Confluent’s vision of a Kafka-based stream data platform for data
integration closely matches the approach we discussed in this chap‐
ter, as described in two blog posts by Jay Kreps.26,27

Further Reading | 79

http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
http://shop.oreilly.com/product/0636920034339.do
http://www.confluent.io/blog/stream-data-platform-1/
http://www.confluent.io/blog/stream-data-platform-1/
http://www.confluent.io/blog/stream-data-platform-2/
http://www.confluent.io/blog/stream-data-platform-2/
http://shop.oreilly.com/product/0636920034339.do

CHAPTER 3

Integrating Databases and Kafka
with Change Data Capture

The approach we’ve discussed in the last two chapters has been a
radical departure from the way databases are traditionally used:
away from transactions that query and update a database in place,
and toward an ordered log of immutable events. We saw that this
new approach offers many benefits, such as better integration of het‐
erogeneous data systems, better scalability, reliability, and perfor‐
mance.

However, fundamentally changing the way we store and process
data is a big, scary step. In reality, most of us have existing systems
that we need to keep running and for which a rewrite is not an
option. In this chapter, we will discuss a solution for those situations
where you already have an existing database as system of record.

Introducing Change Data Capture
As discussed in Chapter 2, if you have data in a database, it’s likely
that you also need a copy of that data in other places: perhaps in a
full-text index (for keyword search), in Hadoop or a data warehouse
(for business analytics and offline processing such as recommenda‐
tion systems), and perhaps in various other caches or indexes (to
make reads faster and to take load off the database).

A log is still a great way of implementing this data integration. And
if the data source is an existing database, we can simply extract that

81

log from your database. This idea is called change data capture
(CDC), illustrated in Figure 3-1.

Figure 3-1. Capturing all data changes that are written to a database,
and exporting them to a log.

Whereas in Figure 2-30 the application appended events directly to
the log, the web app in Figure 3-1 uses the database for reading and
writing. If it’s a relational database, the application may insert,
update, and delete rows arbitrarily, as usual.

The question is: how do we get the data in the database into a log
without forcing the web app to change its behavior?

To begin, observe this: most databases have the ability to export a
consistent snapshot of the entire database contents (e.g., for backup

purposes). For example, MySQL has mysqldump, and PostgreSQL

has pg_dump. If you want a copy of your database in a search index,
you could take such a snapshot and then import it into your search
server.

However, most databases never stand still: there is always someone
writing to them. This means the snapshot is already outdated before
you’ve even finished copying the data. But, maybe you can cope with
slightly stale data; in that case you could take snapshots periodically

82 | Chapter 3: Integrating Databases and Kafka with Change Data Capture

(e.g., once a day) and update the search index with each new snap‐
shot.

To get more up-to-date information in the search index, you could
take snapshots more frequently, although this quickly becomes inef‐
ficient: on a large database, it can take hours to make a copy of the
entire database and re-index it.

Typically, only a small part of the database changes between one
snapshot and the next. What if you could process only a “diff ” of
what changed in the database since the last snapshot? That would
also be a smaller amount of data, so you could take such diffs more
frequently. What if you could take such a “diff ” every minute? Every
second? 100 times a second?

Database = Log of Changes
When you take it to the extreme, the changes to a database become a
stream of events. Every time someone writes to the database, that is
an event in the stream. If you apply those events to a database in
exactly the same order as the original database committed them, you
end up with an exact copy of the database.

If you think about it, this is exactly how database replication works
(see Chapter 2, Figure 2-19). The leader database produces a replica‐
tion log—that is, a stream of events that tells the followers what
changes they need to make to their copy of the data in order to stay
up-to-date with the leader. By continually applying this stream, they
maintain a copy of the leader’s data.

We want to do the same, except that the follower isn’t another
instance of the same database software, but a different technology (a
search index, cache, data warehouse, etc). Although replication is a
common feature in databases, most databases unfortunately con‐
sider the replication log to be an implementation detail, not a public
API. This means it is often difficult to get access to the replication
events in a format that an application can use.

Database = Log of Changes | 83

1 “Oracle GoldenGate 12c: Real-time access to real-time information.” Oracle White

Paper, oracle.com, March 2015.

2 “5.2.4 The Binary Log,” MySQL 5.7 Reference Manual, dev.mysql.com.

3 Manuel Schoebel: “Meteor.js and MongoDB Replica Set for Oplog Tailing,” manuel-

schoebel.com, 28 January 2014.

4 J Chris Anderson, Jan Lehnardt, and Noah Slater: CouchDB: The Definitive Guide.

O’Reilly Media, January 2010. ISBN: 978-0-596-15589-6, available online at

guide.couchdb.org.

5 Slava Akhmechet: “Advancing the realtime web,” rethinkdb.com, 27 January 2015.

6 “Firebase,” Google Inc., firebase.com.

7 Shirshanka Das, Chavdar Botev, Kapil Surlaker, et al.: “All Aboard the Databus!,” at

ACM Symposium on Cloud Computing (SoCC), October 2012.

8 Yogeshwer Sharma, Philippe Ajoux, Petchean Ang, et al.: “Wormhole: Reliable Pub-Sub

to Support Geo-replicated Internet Services,” at 12th USENIX Symposium on Networked

Systems Design and Implementation (NSDI), May 2015.

9 “Kafka Connect,” Confluent Platform documentation, docs.confluent.io, December

2015.

Oracle GoldenGate,1 the MySQL binlog,2 the MongoDB oplog,3 or
the CouchDB changes feed4 do something like this, but they’re not
exactly easy to use correctly. More recently, a few databases such as
RethinkDB5 or Firebase6 have oriented themselves toward real-time
change streams.

Change Data Capture (CDC) effectively means replicating data from
one storage technology to another. To make it work, we need to
extract two things from the source database, in an application-
readable data format:

• A consistent snapshot of the entire database contents at one
point in time

• A real-time stream of changes from that point onward—every
insert, update, or delete needs to be represented in a way that we
can apply it to a copy of the data and ensure a consistent out‐
come.

At some companies, CDC has become a key building block for
applications—for example, LinkedIn built Databus7 and Facebook
built Wormhole8 for this purpose. Kafka 0.9 includes an API called
Kafka Connect,9 designed to connect Kafka to other systems, such as
databases. A Kafka connector can use CDC to bring a snapshot and
stream of changes from a database into Kafka, from where it can be

84 | Chapter 3: Integrating Databases and Kafka with Change Data Capture

http://www.oracle.com/us/products/middleware/data-integration/oracle-goldengate-realtime-access-2031152.pdf
https://dev.mysql.com/doc/refman/5.7/en/binary-log.html
http://www.manuel-schoebel.com/blog/meteorjs-and-mongodb-replica-set-for-oplog-tailing
http://guide.couchdb.org/
http://rethinkdb.com/blog/realtime-web/
https://www.firebase.com/
http://www.socc2012.org/s18-das.pdf
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/sharma
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/sharma
http://docs.confluent.io/2.0.0/connect/index.html

used for various applications. Kafka Connect draws from the lessons
learnt from Databus and similar systems.

If you have a change stream that goes all the way back to the first
ever write to the database, you don’t need the snapshot, because the
change stream contains the entire contents of the database already.
However, most databases delete transaction logs after a while, to
avoid running out of disk space. In this case, you need both a one-
time snapshot (at the time when you start consuming the change
stream) and the change stream (from that point onward) in order to
reconstruct the database contents.

Implementing the Snapshot and the Change
Stream
Figure 3-2 shows one good approach for getting both the snapshot
and the change stream. Users are continually reading and writing to
the database, and we want to allow the change capture process to
begin without interfering with this (i.e., without downtime).

Figure 3-2. Change capture without stopping writes to a database.

Many databases can take a point-in-time snapshot of the database
without locking the database for writes (this is implemented by

Implementing the Snapshot and the Change Stream | 85

using the MVCC mechanism in PostgreSQL, MySQL/InnoDB, and
Oracle). That is, the snapshot sees the entire database in a consistent
state, as it existed at one point in time, even though parts of it may
be modified by other transactions while the snapshot is running.
This is a great feature, because it would be very difficult to reason
about a copy of the database in which some parts are older and
other parts are newer.

The change stream needs to be coordinated with this snapshot so
that it contains exactly those data changes that occurred since the
snapshot was taken, no more and no less. Achieving this is more dif‐
ficult, and depends on the particular database system you’re using.
In the next section, we will discuss a particular implementation for
PostgreSQL which does this.

With Kafka and Kafka Connect, we can actually unify the snapshot
and the change stream into a single event log. The snapshot is trans‐
lated into a log by generating an “insert row” event for every row in
the database snapshot. This is then followed by the change stream,
which consists of “insert row,” “update row,” or “delete row” events.
Later in this chapter we will discuss how and why this works.

While the snapshot is being captured (which can take hours on a
large database, as previously noted), clients continue writing to the
database, as illustrated in Figure 3-2. The change events from these
writes must be queued up, and sent to the log when the snapshot is
complete. Finally, when the backlog is cleared, the change capture
system can just pick up data change events, as and when they hap‐
pen, and send them to the change log.

The resulting change log has all the good properties that we dis‐
cussed in Chapter 2, without changing the way the application uses
the database. We just need to figure out how to make the change
data capture work. That’s what the rest of this chapter is about.

Bottled Water: Change Data Capture with
PostgreSQL and Kafka
There are many databases to choose from, and the right choice of
database depends on the situation. In this section, we’ll talk specifi‐

86 | Chapter 3: Integrating Databases and Kafka with Change Data Capture

10 “PostgreSQL,” The PostgreSQL Global Development Group, postgresql.org.

11 Peter van Hardenberg: “Postgres: The Bits You Haven’t Found,” at Heroku Waza Confer‐

ence, 28 February 2013. Recording at vimeo.com.

12 “Chapter 46. Logical Decoding,” PostgreSQL 9.4.4 Documentation, postgresql.org.

13 Martin Kleppmann: “Bottled Water for PostgreSQL,” Confluent, Inc., github.com, April

2015.

cally about PostgreSQL10 (or Postgres for short), an open source rela‐
tional database that is surprisingly full-featured.11 However, you can
draw lessons from the general approach described here and apply
them to any other database.

Until recently, if you wanted to get a stream of changes from Post‐
gres, you had to use triggers. This is possible, but it is fiddly, requires
schema changes, and doesn’t perform very well. However, Postgres
9.4 (released in December 2014) introduced a new feature that
changes everything: logical decoding.12

With logical decoding, change data capture for Postgres suddenly
becomes much more feasible. So, when this feature was released, I
set out to build a change data capture tool for Postgres that would
take advantage of the new facilities. Confluent sponsored me to
work on it (thank you, Confluent!), and we have released an alpha
version of this tool as open source. It is called Bottled Water13

(Figure 3-3).

At the time of writing, Bottled Water is a standalone tool that copies
a consistent snapshot and a stream of changes from Postgres to
Kafka. There are plans to integrate it with the Kafka Connect frame‐
work for easier deployment.

Bottled Water: Change Data Capture with PostgreSQL and Kafka | 87

http://www.postgresql.org/
https://vimeo.com/61044807
http://www.postgresql.org/docs/9.4/static/logicaldecoding.html
https://github.com/confluentinc/bottledwater-pg

Figure 3-3. Bottled Water is what you get if you take a stream and
package it up in a form that’s easy to transport and consume.

The name “logical decoding” comes from the fact that this feature
decodes the database’s write-ahead log (WAL). We encountered the
WAL previously in Chapter 2 (Figure 2-16), in the context of mak‐
ing B-Trees robust against crashes. Besides crash recovery, Postgres
also uses the WAL for replication. Follower nodes continuously
apply the changes from the WAL to their own copy of the database,
as if they were constantly recovering from a crash.

This is a good way of implementing replication, but it has a down‐
side: the log records in the WAL are very low-level, describing byte
modifications to Postgres’ internal data structures. It’s not feasible
for an application to decode the WAL by itself.

Enter logical decoding: this feature parses the WAL, and gives us
access to row-level change events. Every time a row in a table is
inserted, updated, or deleted, that’s an event. Those events are grou‐
ped by transaction, and appear in the order in which they were com‐
mitted to the database. Aborted/rolled-back transactions do not
appear in the stream. Thus, if you apply the change events in the
same order, you end up with an exact, transactionally consistent
copy of the database—precisely what we want for change capture.

88 | Chapter 3: Integrating Databases and Kafka with Change Data Capture

14 “Apache Avro,” Apache Software Foundation, avro.apache.org.

15 “HDFS Connector,” Confluent Platform 2.0.0 documentation, docs.confluent.io,

December 2015.

The Postgres logical decoding is well-designed: it even creates a con‐
sistent snapshot that is coordinated with the change stream. You can
use this snapshot to make a point-in-time copy of the entire data‐
base (without locking—you can continue writing to the database
while the copy is being made) and then use the change stream to get
all writes that happened since the snapshot.

Bottled Water uses these features to extract the entire contents of a
database, and encode it using Avro,14 an efficient binary data format.
The encoded data is sent to Kafka, where you can use it in many
ways: index it in Elasticsearch, use it to populate a cache, process it
with Kafka Streams or a stream processing framework, load it into
HDFS with the Kafka HDFS connector,15 and so on. The nice thing
is that you only need to get the data into Kafka once, and then you
can have arbitrarily many subscribers, without putting any addi‐
tional load on Postgres.

Why Kafka?
Kafka is best known for transporting high-volume activity events,
such as web server logs, and user click events. Such events are typi‐
cally retained for a certain period of time (e.g., a few days) and then
discarded or archived to long-term storage. Is Kafka really a good fit
for database change events? We don’t want database data to be dis‐
carded!

In fact, Kafka is a perfect fit—the key is Kafka’s log compaction fea‐
ture, which was designed precisely for this purpose (Figure 3-4).

Bottled Water: Change Data Capture with PostgreSQL and Kafka | 89

http://avro.apache.org/
http://docs.confluent.io/2.0.0/connect/connect-hdfs/docs/index.html

16 Michael Paquier: “Postgres 9.4 feature highlight: REPLICA IDENTITY and logical rep‐

lication,” michael.otacoo.com, 24 April 2014.

Figure 3-4. Kafka’s log compaction rewrites a stream in the back‐
ground: if there are several messages with the same key, only the most
recent is retained, and older messages are discarded.

If you enable log compaction, there is no time-based expiry of data.
Instead, every message has a key, and Kafka retains the latest mes‐
sage for a given key indefinitely. Earlier messages for a given key are
eventually garbage-collected. This is quite similar to new values
overwriting old values in a key-value store and is essentially the
same technique as log-structured storage engines use (Figure 2-17).

Bottled Water identifies the primary key (or replica identity16) of
each table in Postgres and uses that as the key of the messages sent
to Kafka. The value of the message depends on the kind of event
(Figure 3-5):

• For inserts and updates, the message value contains all of the
row’s fields, encoded as Avro.

90 | Chapter 3: Integrating Databases and Kafka with Change Data Capture

http://michael.otacoo.com/postgresql-2/postgres-9-4-feature-highlight-replica-identity-logical-replication/
http://michael.otacoo.com/postgresql-2/postgres-9-4-feature-highlight-replica-identity-logical-replication/

• For deletes, the message value is set to null. This causes Kafka to
remove the message during log compaction, so its disk space is
freed up.

Figure 3-5. Postgres concepts and the way Bottled Water represents
them in Kafka.

Each table in Postgres is sent to a separate topic in Kafka. It wouldn’t
necessarily have to be that way, but this approach makes log com‐
paction work best: in SQL, a primary key uniquely identifies a row
in a table, and in Kafka, a message key defines the unit of log com‐
paction in a topic. (Tables with no primary key or replica identity
are currently not well supported by logical decoding; this will hope‐
fully be addressed in future versions of Postgres.)

The great thing about log compaction is that it blurs the distinction
between the initial snapshot of the database and the ongoing change
stream. Bottled Water writes the initial snapshot to Kafka by turning
every single row in the database into a message, keyed by primary
key, and sending them all to the Kafka brokers. When the snapshot
is done, every row that is inserted, updated, or deleted similarly
turns into a message.

If a row is frequently updated, there will be many messages with the
same key (because each update turns into a message). Fortunately,

Bottled Water: Change Data Capture with PostgreSQL and Kafka | 91

Kafka’s log compaction will sort this out and garbage-collect the old
values so that we don’t waste disk space. On the other hand, if a row
is never updated or deleted, it just stays unchanged in Kafka forever
—it is never garbage-collected.

This means that with log compaction, every row that exists in the
database also exists in Kafka—it is only removed from Kafka after it
is overwritten or deleted in the database. In other words, the Kafka
topic contains a complete copy of the entire database (Figure 3-6).

Figure 3-6. When log compaction is enabled, Kafka only removes a
message if it is overwritten by another message with the same key;
otherwise, it is retained indefinitely.

Having the full database dump and the real-time stream in the same
system (Kafka) is tremendously powerful because it allows you to
bootstrap new consumers by loading their contents from the log in
Kafka.

For example, suppose that you’re feeding a database into Kafka by
using Bottled Water and you currently have a search index that
you’re maintaining by consuming that Kafka topic. Now suppose
that you’re working on a new application feature for which you need
to support searching on a new field that you are currently not index‐
ing.

92 | Chapter 3: Integrating Databases and Kafka with Change Data Capture

In a traditional setup, you would need to somehow go through all of
your documents and re-index them with the new field. Doing this at
the same time as processing live updates is dangerous, because you
might end up overwriting new data with older data.

If you have a full database dump in a log-compacted Kafka topic,
this is no problem. You just create a new, completely empty index,
and start your Kafka consumer from the beginning of the topic (also
known as “offset 0”), as shown in Figure 3-7.

Figure 3-7. To build a new index or view of the data in a Kafka topic,
consume the topic from the beginning.

Your consumer then gradually works its way forward through the
topic, sequentially processing each message in order and writing it
to the new index (including the new field). While this is going on,
the old index is still being maintained as usual—it is completely
unaffected by the new index being built at the same time. Users’
reads are being handled by the old index.

Finally, after some time, the new index reaches the latest message in
the topic (Figure 3-8). At this point, nothing special happens—it just
continues consuming messages as they appear in Kafka, the same as
it was doing before. However, we have done a great thing: we have

Bottled Water: Change Data Capture with PostgreSQL and Kafka | 93

created a new index that contains all the data in the topic, and thus
all the data in the database!

Figure 3-8. While building the new index, users can continue reading
from the old index. When the new index is ready, you can switch over
users at your leisure.

You now have two full indexes of the data, side by side: the old one
and the new one, both being kept current with real-time updates
from Kafka. Users are still reading from the old index, but as soon as
you have tested the new index, you can switch users from the old
index to the new one. Even this switch can be gradual, and you can
always go back in case something goes wrong; the old index is still
there, still being maintained.

After all users have been moved to the new index and you have
assured yourself that everything is fine, you can stop updating the
old index, shut it down and reclaim its resources.

This approach avoids a large, dangerous data migration, and repla‐
ces it with a gradual process that takes small steps. At each step you
can always go back if something went wrong, which can give you
much greater confidence about proceeding. This approach “minimi‐

94 | Chapter 3: Integrating Databases and Kafka with Change Data Capture

17 Daniel Bryant: “Agile Architecture: Reversibility, Communication and Collaboration,”

infoq.com, 4 May 2015.

18 Nathan Marz: “How to beat the CAP theorem,” nathanmarz.com, 13 October 2011.

19 Gwen Shapira: “The problem of managing schemas,” radar.oreilly.com, 4 November

2014.

20 Martin Kleppmann: “Schema evolution in Avro, Protocol Buffers and Thrift,” mar‐

tin.kleppmann.com, 5 December 2012.

21 Jay Kreps: “Putting Apache Kafka to use: A practical guide to building a stream data

platform (Part 2),” confluent.io, 24 February 2015.

zes irreversibility” (as Martin Fowler puts it17), which allows you to
move faster and be more agile without breaking things.

Moreover, you can use this technique to recover from bugs. Suppose
that you deploy a bad version of your application that writes incor‐
rect data to a database. In a traditional setup, where the application
writes directly to the database, it is difficult to recover (restoring
from a backup would most likely incur data loss). However, if you’re
going via a log and the bug is downstream from the log, you can
recover by using the same technique as just described: process all
the data in the log again using a bug-fixed version of the code. Being
able to recover from incorrectly written data by re-processing is
sometimes known as human fault-tolerance.18

The idea of maintaining a copy of your database in Kafka surprises
people who are more familiar with traditional enterprise messaging
and its limitations. Actually, this use case is exactly why Kafka is
built around a replicated log: it makes this kind of large-scale data
retention and distribution possible. Downstream systems can reload
and re-process data at will without impacting the performance of
the upstream database that is serving low-latency queries.

Why Avro?
When Bottled Water extracts data from Postgres, it could be enco‐
ded as JSON, or Protocol Buffers, or Thrift, or any number of for‐
mats. However, I believe Avro is the best choice. Gwen Shapira has
written about the advantages of Avro for schema management,19 and
I’ve written a blog post comparing it to Protobuf and Thrift.20 The
Confluent stream data platform guide21 gives some more reasons
why Avro is good for data integration.

Bottled Water: Change Data Capture with PostgreSQL and Kafka | 95

http://www.infoq.com/news/2015/05/agile-architecture
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
http://radar.oreilly.com/2014/11/the-problem-of-managing-schemas.html
http://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
http://www.confluent.io/blog/stream-data-platform-2/
http://www.confluent.io/blog/stream-data-platform-2/

22 “Schema Registry,” Confluent Platform Documentation, docs.confluent.io.

Bottled Water inspects the schema of your database tables and auto‐
matically generates an Avro schema for each table. The schemas are
automatically registered with Confluent’s schema registry,22 and the
schema version is embedded in the messages sent to Kafka. This
means it “just works” with the stream data platform’s serializers: you
can work with the data from Postgres as meaningful application
objects and rich datatypes, without writing a lot of tedious parsing
code.

The Logical Decoding Output Plug-In
Now that we’ve examined Bottled Water’s use of Kafka log compac‐
tion and Avro data encoding, let’s have a little peek into the internals
of its integration with Postgres, and see how it uses the logical
decoding feature.

Figure 3-9. How the sausage is made—or rather, the water is bottled.

An interesting property of Postgres’ logical decoding feature is that
it does not define a wire format in which change data is sent over the

96 | Chapter 3: Integrating Databases and Kafka with Change Data Capture

http://docs.confluent.io/1.0/schema-registry/docs/index.html

23 “Chapter 46. Logical Decoding,” PostgreSQL 9.4.4 Documentation, postgresql.org.

network to a consumer. Instead, it defines an output plug-in API23

that receives a function call for every inserted, updated, or deleted
row. Bottled Water uses this API to read data in the database’s inter‐
nal format, and serializes it to Avro.

The output plug-in must be written in C, using the Postgres exten‐
sion mechanism, and then loaded into the database server as a
shared library (Figure 3-10). This requires superuser privileges and
filesystem access on the database server, so it’s not something to be
undertaken lightly. I understand that many a database administrator
will be scared by the prospect of running custom code inside the
database server. Unfortunately, this is the only way logical decoding
can currently be used.

At the moment, the logical decoding plug-in must be installed on
the leader database. In principle, it would be possible to have it run
on a separate follower so that it cannot impact other clients, but the
current implementation in Postgres does not allow this. This limita‐
tion will hopefully be lifted in future versions of Postgres.

The Logical Decoding Output Plug-In | 97

http://www.postgresql.org/docs/9.4/static/logicaldecoding.html

Figure 3-10. The Bottled Water plug-in runs inside the database server.
The client daemon connects to it, sends schemas to the registry, and
sends data to Kafka.

The Client Daemon
Besides the plug-in (which runs inside the database server), Bottled
Water consists of a client program which you can run anywhere. It
connects to the Postgres server and to the Kafka brokers, receives
the Avro-encoded data from the database, and forwards it to Kafka.

The client is also written in C because it’s easiest to use the Postgres
client libraries that way, and because some code is shared between
the plug-in and the client. It’s fairly lightweight and doesn’t need to
write to disk. At the time of writing, work is underway to integrate
the Bottled Water client with the Kafka Connect framework.

What happens if the client crashes or is disconnected from either
Postgres or Kafka? No problem: it keeps track of which messages
have been published and acknowledged by the Kafka brokers. When
the client restarts after an error, it replays all messages that haven’t
been acknowledged. Thus, some messages could appear twice in
Kafka, but no data should be lost. Log compaction will eventually
remove the duplicated messages.

98 | Chapter 3: Integrating Databases and Kafka with Change Data Capture

Concurrency
One more question remains: what happens if several clients are con‐
currently writing to the database (Figure 3-11)? How is the result of
those writes reflected in the change stream that is sent to Kafka?
What happens if a transaction writes some data and then aborts
before committing?

Figure 3-11. Two transactions concurrently write to the database, but
Bottled Water only sees the changes when they are committed, in the
order in which they are committed.

Fortunately, in the case of Bottled Water, PostgreSQL’s logical decod‐
ing API offers a simple answer: all of the writes made during a
transaction are exposed to the logical decoding API at the same
time, at the time the transaction commits. This means Bottled Water
doesn’t need to worry about aborted transactions (it won’t even see
any writes made by a transaction that subsequently aborts) or about
ordering of writes.

PostgreSQL’s transaction isolation semantics ensure that if you apply
writes in the order in which they were committed, you get the right
result. However, the WAL may actually contain interleaved writes
from several different transactions. Thus, while decoding the WAL,

The Logical Decoding Output Plug-In | 99

24 Jay Kreps: “Putting Apache Kafka to use: A practical guide to building a stream data

platform (Part 2),” confluent.io, 24 February 2015.

the logical decoding feature needs to reorder those writes so that
they appear in the order of transaction commit.

Postgres makes this particular aspect of change data capture easy. If
you are implementing change data capture with another database,
you may need to deal with these concurrency issues yourself.

Status of Bottled Water
At present, Bottled Water is alpha-quality software. Quite a bit of
care has gone into its design and implementation, but it hasn’t yet
been run in any production environment. However, with some test‐
ing and tweaking it will hopefully become production-ready in
future. We released it as open source early, in the hope of getting
feedback from the community; the response and the number of con‐
tributions from the community has been encouraging. When inte‐
grated with Kafka Connect, it will hopefully become a fully
supported part of the Kafka ecosystem.

I’m excited about change capture because it allows you to unlock the
value in the data you already have and makes your architecture
more agile by reducing irreversibility. Getting data out of databases
and into a stream data platform24 allows you to combine it with
event streams and data from other databases in real time.

In the next chapter, we will see how this approach of building sys‐
tems resembles the design of Unix, which has been successful for
approximately 40 years and is still going strong.

100 | Chapter 3: Integrating Databases and Kafka with Change Data Capture

http://www.confluent.io/blog/stream-data-platform-2/
http://www.confluent.io/blog/stream-data-platform-2/

CHAPTER 4

The Unix Philosophy
of Distributed Data

Contemporary software engineering still has a lot to learn from the
1970s. As we’re in such a fast-moving field, we often have a tendency
of dismissing older ideas as irrelevant—and consequently, we end up
having to learn the same lessons over and over again, the hard way.
Although computers have become faster, data has grown bigger, and
requirements have become more complex, many old ideas are
actually still highly relevant today.

In this chapter, I’d like to highlight one particular set of old ideas
that I think deserves more attention today: the Unix philosophy. I’ll
show how this philosophy is very different from the design
approach of mainstream databases.

In fact, you can consider Kafka and stream processing to be a
twenty-first-century reincarnation of Unix pipes, drawing lessons
from the design of Unix and correcting some historical mistakes.
Lessons learned from the design of Unix can help us to create better
application architectures that are easier to maintain in the long run.

Let’s begin by examining the foundations of the Unix philosophy.

Simple Log Analysis with Unix Tools
You’ve probably seen the power of Unix tools before—but to get
started, let me give you a concrete example that we can talk about.
Suppose that you have a web server that writes an entry to a log file

101

every time it serves a request. For example, using the nginx default
access log format, one line of the log might look like the following
(this is actually one line; it’s only broken up into multiple lines here
for readability):

216.58.210.78 - - [27/Feb/2015:17:55:11 +0000] "GET

/css/typography.css HTTP/1.1" 200 3377

"http://martin.kleppmann.com/" "Mozilla/5.0 (Macintosh;

Intel Mac OS X 10_9_5) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/40.0.2214.115 Safari/537.36"

This line of the log indicates that on 27 February, 2015 at 17:55:11

UTC, the server received a request for the file /css/typography.css

from the client IP address 216.58.210.78. It then goes on to note
various other details, including the browser’s user-agent string.

Various tools can take these log files and produce pretty reports
about your website traffic, but for the sake of the exercise, let’s build
our own, using basic Unix tools. Let’s determine the five most popu‐
lar URLs on our website. To begin, we need to extract the path of the

URL that was requested, for which we can use awk.

awk doesn’t know about the format of nginx logs—it just treats the

log file as text. By default, awk takes one line of input at a time, splits
it by whitespace, and makes the whitespace-separated components

available as variables $1, $2, and so on. In the nginx log example, the
requested URL path is the seventh whitespace-separated component
(Figure 4-1).

102 | Chapter 4: The Unix Philosophy of Distributed Data

Figure 4-1. Extracting the requested URL path from a web server log

by using awk.

Now that you’ve extracted the path, you can determine the five most
popular pages on your website as follows:

awk '{print $7}' access.log |

 sort |

 uniq -c |

 sort -rn |

 head -n 5

Split by whitespace, 7th field is request path

Make occurrences of the same URL appear consecutively in file

Replace consecutive occurrences of the same URL with a count

Sort by number of occurrences, descending

Output top 5 URLs

The output of that series of commands looks something like this:

4189 /favicon.ico

3631 /2013/05/24/improving-security-of-ssh-private-keys.html

2124 /2012/12/05/schema-evolution-in-avro-protocol-buffers-

thrift.html

Simple Log Analysis with Unix Tools | 103

1 Adam Drake: “Command-line tools can be 235x faster than your Hadoop cluster,”

aadrake.com, 25 January 2014.

1369 /

 915 /css/typography.css

Although the chain of commands looks a bit obscure if you’re unfa‐
miliar with Unix tools, it is incredibly powerful. It will process giga‐
bytes of log files in a matter of seconds, and you can easily modify
the analysis to suit your needs. For example, if you want to count

top client IP addresses instead of top pages, change the awk argu‐

ment to '{print $1}'.

Figure 4-2. Unix: small, focused tools that combine well with one
another.

Many data analyses can be done in a few minutes using some com‐

bination of awk, sed, grep, sort, uniq, and xargs, and they perform
surprisingly well.1 This is no coincidence: it is a direct result of the
design philosophy of Unix (Figure 4-3).

104 | Chapter 4: The Unix Philosophy of Distributed Data

http://aadrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-cluster.html

2 M D McIlroy, E N Pinson, and B A Tague: “UNIX Time-Sharing System: Foreword,”

The Bell System Technical Journal, volume 57, number 6, pages 1899–1904, July 1978.

3 Rob Pike and Brian W Kernighan: “Program design in the UNIX environment,” AT&T

Bell Laboratories Technical Journal, volume 63, number 8, pages 1595–1605, October

1984. doi:10.1002/j.1538-7305.1984.tb00055.x

Figure 4-3. Two aspects of the Unix philosophy, as articulated by some
of its designers in 1978.

The Unix philosophy is a set of principles that emerged gradually
during the design and implementation of Unix systems during the
late 1960s and 1970s. There are various interpretations of the Unix
philosophy, but in the 1978 description by Doug McIlroy, Elliot Pin‐
son, and Berk Tague,2 two points particularly stand out:

• Make each program do one thing well. To do a new job, build
afresh rather than complicate old programs by adding new “fea‐
tures.”3

• Expect the output of every program to become the input to
another, as yet unknown, program.

These principles are the foundation for chaining together programs
into pipelines that can accomplish complex processing tasks. The

Simple Log Analysis with Unix Tools | 105

https://archive.org/details/bstj57-6-1899
http://harmful.cat-v.org/cat-v/unix_prog_design.pdf
http://dx.doi.org/10.1002/j.1538-7305.1984.tb00055.x

key idea here is that a program does not know or care where its
input is coming from, or where its output is going: it may be a file,
or another program that’s part of the operating system, or another
program written by someone else entirely.

Pipes and Composability
The tools that come with the operating system are generic, but they
are designed such that they can be composed together into larger
programs that can perform application-specific tasks.

The benefits that the designers of Unix derived from this design
approach sound quite like the ideas of the Agile and DevOps move‐
ments that appeared decades later: scripting and automation, rapid
prototyping, incremental iteration, being friendly to experimenta‐
tion, and breaking down large projects into manageable chunks.
Plus ça change...

Figure 4-4. A Unix pipe joins the output of one process to the input of
another.

When you join two commands by using the pipe character in your
shell, the shell starts both programs at the same time, and attaches
the output of the first process to the input of the second process.

106 | Chapter 4: The Unix Philosophy of Distributed Data

4 Dennis M Ritchie and Ken Thompson: “The UNIX Time-Sharing System,” Communi‐

cations of the ACM, volume 17, number 7, July 1974. doi:10.1145/361011.361061

5 Dennis M Richie: “Advice from Doug McIlroy,” cm.bell-labs.com.

This attachment mechanism uses the pipe syscall provided by the
operating system.4

Note that this wiring is not done by the programs themselves; it’s
done by the shell—this allows the programs to be loosely coupled,
and not worry about where their input is coming from or where
their output is going.

The pipe had been invented in 1964 by Doug McIlroy (Figure 4-5),
who described it like this in an internal Bell Labs memo:5 “We
should have some ways of coupling programs like [a] garden hose—
screw in another segment when it becomes necessary to massage
data in another way.”

Figure 4-5. Doug McIlroy describes “coupling programs like [a] garden
hose,” the idea that was later known as pipes.

The Unix team also realized early that the interprocess communica‐
tion mechanism (pipes) can look very similar to the I/O mechanism
for reading and writing files. We now call this input redirection

Pipes and Composability | 107

http://www.cs.virginia.edu/~zaher/classes/CS656/p365-ritchie.pdf
http://dx.doi.org/10.1145/361011.361061
http://cm.bell-labs.co/who/dmr/mdmpipe.html

(using the contents of a file as input to a process) and output redi‐
rection (writing the output of a process to a file, Figure 4-6).

Figure 4-6. A process doesn’t care whether its input and output are files
on disk, or pipes to other processes.

The reason that Unix programs can be composed so flexibly is that
they all conform to the same interface (Figure 4-7): most programs

have one stream for input data (stdin) and two output streams

(stdout for regular output data, and stderr for errors and diagnos‐
tic messages to the user).

108 | Chapter 4: The Unix Philosophy of Distributed Data

Figure 4-7. Unix tools all have the same interface of input and output
streams. This standardization is crucial to enabling composability.

Programs can also do other things besides reading stdin and writ‐

ing stdout, such as reading and writing files, communicating over
the network, or drawing a graphical user interface. However, the

stdin/stdout communication is considered to be the main means
for data to flow from one Unix tool to another.

The great thing about the stdin/stdout interface is that anyone can
implement it easily, in any programming language. You can develop
your own tool that conforms to this interface, and it will play nicely
with all the standard tools that ship as part of the operating system.

For example, when analyzing a web server log file, perhaps you want
to find out how many visitors you have from each country. The log
doesn’t tell you the country, but it does tell you the IP address, which
you can translate into a country by using an IP geolocation database.
Such a database probably isn’t included with your operating system
by default, but you can write your own tool that takes IP addresses

on stdin, and outputs country codes on stdout.

After you’ve written that tool, you can include it in the data process‐
ing pipeline we discussed previously, and it will work just fine
(Figure 4-8). This might seem painfully obvious if you’ve been

Pipes and Composability | 109

6 Edgar F Codd: “A Relational Model of Data for Large Shared Data Banks,” Communica‐

tions of the ACM, volume 13, number 6, pages 377–387, June 1970. doi:

10.1145/362384.362685

working with Unix for a while, but I’d like to emphasize how
remarkable this is: your own code runs on equal terms with the tools
provided by the operating system.

Figure 4-8. You can write your own tool that reads stdin and writes

stdout, and it will work just fine with tools provided by the operating
system.

Apps with graphical user interfaces or web apps cannot simply be
extended and wired together like this. You can’t just pipe Gmail into
a separate search engine app, and post results to a wiki. Today it’s an
exception, not the norm, to have programs that work together as
smoothly as Unix tools do.

Unix Architecture versus Database
Architecture
Change of scene. Around the same time as Unix was being devel‐
oped, the relational data model was proposed,6 which in time

110 | Chapter 4: The Unix Philosophy of Distributed Data

http://people.csail.mit.edu/tdanford/6830papers/codd-relational-model.pdf
http://dx.doi.org/10.1145/362384.362685
http://dx.doi.org/10.1145/362384.362685

7 Eric A Brewer and Joseph M Hellerstein: “CS262a: Advanced Topics in Computer Sys‐

tems,” Course Notes, University of California, Berkeley, cs.berkeley.edu, August 2011.

became SQL and subsequently took over the world. Many databases
actually run on Unix systems. Does that mean they also follow the
Unix philosophy?

Figure 4-9. In database systems, servers and clients serve two very dif‐
ferent roles.

The dataflow in most database systems is very different from Unix

tools. Rather than using stdin and stdout as communication chan‐
nels, there is a database server, and several clients (Figure 4-9). The
clients send queries to read or write data on the server, the server
handles the queries and sends responses to the clients. This relation‐
ship is fundamentally asymmetric: clients and servers are distinct
roles.

The design philosophy of relational databases is also very different
from Unix.7 The relational model (and SQL, which was derived
from it) defines clean high-level semantics that hides implementa‐
tion details of the system—for example, applications don’t need to
care how the database represents data internally on disk. The fact

Unix Architecture versus Database Architecture | 111

http://www.cs.berkeley.edu/~brewer/cs262/systemr.html
http://www.cs.berkeley.edu/~brewer/cs262/systemr.html

8 Craig Kerstiens: “JavaScript in your Postgres,” postgres.heroku.com, 5 June 2013.

that relational databases have been so wildly successful over decades
indicates that this is a successful strategy.

On the other hand, Unix has very thin abstractions: it just tries to
present hardware resources to programs in a consistent way, and
that’s it. Composition of small tools is elegant, but it’s a much more
low-level programming model than something like SQL.

This difference has follow-on effects on the extensibility of systems.
We saw previously (Figure 4-8) that with Unix, you can add arbi‐
trary code to a processing pipeline. In databases, clients can usually
do anything they like (because they are application code), but the
extensibility of database servers is much more limited (Figure 4-10).

Figure 4-10. Databases have various extension points, but they gener‐
ally don’t have the same modularity and composability as Unix.

Many databases provide some ways of extending the database server
with your own code. For example, many relational databases let you
write stored procedures in their own procedural language such as
PL/SQL (some let you use a general-purpose programming language
such as JavaScript8). However, the things you can do in stored proce‐

112 | Chapter 4: The Unix Philosophy of Distributed Data

https://postgres.heroku.com/blog/past/2013/6/5/javascript_in_your_postgres/

9 Michael Stonebraker and Lawrence A Rowe: “The design of Postgres,” Department of

Electrical Engineering and Computer Sciences, University of California, Berkeley,

Technical Report UCB/ERL M85/95, 1985.

dures are limited. This prevents you from circumventing the databa‐
se’s transactional guarantees.

Other extension points in some databases are support for custom
data types (this was one of the early design goals of Postgres9), for‐
eign data wrappers and pluggable storage engines. Essentially, these
are plug-in APIs: you can run your code in the database server, pro‐
vided that your module adheres to a plug-in API exposed by the
database server for a particular purpose.

This kind of extensibility is not the same as the arbitrary composa‐
bility we saw with Unix tools. The plug-in API is provided for a par‐
ticular purpose, and can’t safely be used for other purposes. If you
want to extend the database in some way that is not foreseen by a
plug-in API or stored procedure, you’ll probably need to change the
code of the database server, which is a big undertaking.

Stored procedures also have a reputation of being hard to maintain
and operate. Compared with normal application code, it is much
more difficult to deal with monitoring, versioning, deployments,
debugging, measuring performance impact, multitenant resource
isolation, and so on.

There’s no fundamental reason why a database couldn’t be more like
an operating system, allowing many users to run arbitrary code and
access data in a shared environment, with good operational tooling
and with appropriate security and access control. However, databa‐
ses have not developed in this direction in practice over the past
decades. Database servers are seen as mostly in the business of stor‐
ing and retrieving your data, and letting you run arbitrary code is
not their top priority.

But, why would you want arbitrary extensibility in a database at all?
Isn’t that just a recipe for shooting yourself in the foot? Well, as we
saw in Chapter 2, many applications need to do a great variety of
things with their data, and a single database with a SQL interface is
simply not sufficient.

Unix Architecture versus Database Architecture | 113

http://db.cs.berkeley.edu/papers/ERL-M85-95.pdf

10 Michael Stonebraker and Uğur Çetintemel: “‘One Size Fits All’: An Idea Whose Time

Has Come and Gone,” at 21st International Conference on Data Engineering (ICDE),

April 2005.

Figure 4-11. A general-purpose database with many features is conve‐
nient but philosophically very different from Unix.

A general-purpose database might try to provide many features in
one product (Figure 4-11, the “one size fits all” approach), but in all
likelihood it will not perform as well as a tool that is specialized for
one particular purpose.10 In practice, you can often get the best
results by combining various different data storage and indexing
systems: for example, you might take the same data and store it in a
relational database for random access, in Elasticsearch for full-text
search, in a columnar format in Hadoop for analytics, and cached in
a denormalized form in memcached (Figure 4-12).

114 | Chapter 4: The Unix Philosophy of Distributed Data

https://cs.brown.edu/~ugur/fits_all.pdf
https://cs.brown.edu/~ugur/fits_all.pdf

Figure 4-12. Rather than trying to satisfy all use cases with one tool, it
is better to support a diverse ecosystem of tools with different areas of
speciality.

Moreover, there are some things that require custom code and can’t
just be done with an off-the-shelf database. For example:

• A machine-learning system (feature extraction, recommenda‐
tion engines, trained classifiers, etc.) usually needs to be cus‐
tomized and adapted to a particular application;

• A notification system needs to be integrated with various exter‐
nal providers (email delivery, SMS, push notifications to mobile
devices, webhooks, etc.);

• A cache might need to contain data that has been filtered, aggre‐
gated, or rendered according to application-specific business
logic (which can become quite complicated).

Thus, although SQL and query planners are a great accomplish‐
ment, they can’t satisfy all use cases. Integration with other storage
systems and extensibility with arbitrary code is also necessary. Unix
shows us that simple, composable tools give us an elegant way of
making systems extensible and flexible—but databases are not like
Unix. They are tremendously complicated, monolithic beasts that

Unix Architecture versus Database Architecture | 115

try to implement all the features you might need in a single pro‐
gram.

Figure 4-13. Sadly, most databases are not designed with composabil‐
ity in mind.

By default, you can’t just pipe one database into another, even if they
have compatible data models (Figure 4-13). You can use bulk load‐
ing and bulk dumping (backup/snapshot), but those are one-off
operations, not designed to be used continuously. Change data cap‐
ture (Chapter 3) allows us to build these pipe-like integrations, but
CDC is somewhat of a fringe feature in many databases. I don’t
know of any mainstream database that uses change streams as its
primary input/output mechanism.

Nor can you insert your own code into the database’s internal pro‐
cessing pipelines, unless the server has specifically provided an
extension point for you, such as triggers.

I feel the design of databases is very self-centered. A database seems
to assume that it’s the center of your universe: the only place where
you might want to store and query your data, the source of truth,
and the destination for all queries. They don’t have the same kind of
composability and extensibility that we find on Unix. As long as you
only need the features provided by the database, this integrated/

116 | Chapter 4: The Unix Philosophy of Distributed Data

monolithic model works very well, but it breaks down when you
need more than what a single database can provide.

Composability Requires a Uniform Interface
We said that Unix tools are composable because they all implement

the same interface of stdin, stdout, and stderr, and each of these
is a file descriptor; that is, a stream of bytes that you can read or write
like a file (Figure 4-14). This interface is simple enough that anyone
can easily implement it, but it is also powerful enough that you can
use it for anything.

Figure 4-14. On Unix, stdin, stdout, and stderr are all the same
kind of thing: a file descriptor (i.e,. a stream of bytes). This makes them
compatible.

Because all Unix tools implement the same interface, we call it a uni‐

form interface. That’s why you can pipe the output of gunzip to wc
without a second thought, even though those two tools appear to
have nothing in common. It’s like lego bricks, which all implement
the same pattern of knobbly bits and grooves, allowing you to stack
any lego brick on any other, regardless of their shape, size, or color.

Composability Requires a Uniform Interface | 117

11 Eric S Raymond: “Plan 9: The Way the Future Was,” in The Art of Unix Programming,

Addison-Wesley Professional, 2003. ISBN: 0131429019, available online at catb.org.

Figure 4-15. The file abstraction can be used to represent many differ‐
ent hardware and software concepts.

The uniform interface of file descriptors in Unix doesn’t just apply
to the input and output of processes; rather, it’s a very broadly
applied pattern (Figure 4-15). If you open a file on the filesystem,
you get a file descriptor. Pipes and Unix sockets provide file descrip‐
tors that are a communication channel to another process on the

same machine. On Linux, the virtual files in /dev are the interfaces
of device drivers, so you might be talking to a USB port or even a

GPU. The virtual files in /proc are an API for the kernel, but
because they’re exposed as files, you can access them with the same
tools as regular files.

Even a TCP connection to a process on another machine is a file
descriptor, although the BSD sockets API (which is most commonly
used to establish TCP connections) is arguably not as “Unixy” as it
could be. Plan 9 shows that even the network could have been
cleanly integrated into the same uniform interface.11

118 | Chapter 4: The Unix Philosophy of Distributed Data

http://www.catb.org/esr/writings/taoup/html/plan9.html

To a first approximation, everything on Unix is a file. This uniform‐
ity means the logic of Unix tools can be separated from the wiring,

making them more composable. sed doesn’t need to care whether
it’s talking to a pipe to another process, or a socket, or a device
driver, or a real file on the filesystem — they all look the same.

Figure 4-16. A file is just a stream of bytes, and most programs need to
parse that stream before they can do anything useful with it.

A file is a stream of bytes, perhaps with an end-of-file (EOF) marker
at some point, indicating that the stream has ended (a stream can be
of arbitrary length, and a process might not know in advance how
long its input is going to be).

A few tools (e.g., gzip) operate purely on byte streams and don’t
care about the structure of the data. But most tools need to parse
their input in order to do anything useful with it (Figure 4-16). For
this, most Unix tools use ASCII, with each record on one line, and
fields separated by tabs or spaces, or maybe commas.

Files are totally obvious to us today, which shows that a byte stream
turned out to be a good uniform interface. However, the implemen‐
tors of Unix could have decided to do it very differently. For exam‐
ple, it could have been a function callback interface, using a schema
to pass strongly typed records from process to process. Or, it could

Composability Requires a Uniform Interface | 119

have been shared memory (like System V IPC or mmap, which
came along later). Or, it could have been a bit stream rather than a
byte stream.

In a sense, a byte stream is a lowest common denominator—the
simplest possible interface. Everything can be expressed in terms of
a stream of bytes, and it’s fairly agnostic to the transport medium
(pipe from another process, file on disk, TCP connection, tape, etc).
But this is also a disadvantage, as we shall discuss in the next sec‐
tion.

Bringing the Unix Philosophy to the Twenty-
First Century
We’ve seen that both Unix and databases have developed good
design principles for software development, but they have taken
very different routes. I would love to see a future in which we can
learn from both paths of development, and combine the best ideas
and implementations from each (Figure 4-17).

Figure 4-17. Can we improve contemporary data systems by borrowing
the best ideas from Unix but avoiding its mistakes?

120 | Chapter 4: The Unix Philosophy of Distributed Data

12 Mark Cavage: “There’s Just No Getting around It: You’re Building a Distributed Sys‐

tem,” ACM Queue, volume 11, number 4, April 2013. doi:10.1145/2466486.2482856

How can we make twenty-first-century data systems better by learn‐
ing from the Unix philosophy? In the rest of this chapter, I’d like to
explore what it might look like if we bring the Unix philosophy to
the world of databases.

First, let’s acknowledge that Unix is not perfect (Figure 4-18).

Figure 4-18. Pros and cons of Unix pipes.

Although I think the simple, uniform interface of byte streams was
very successful at enabling an ecosystem of flexible, composable,
powerful tools, Unix has some limitations:

• It’s designed for use on a single machine. As our applications
need to cope with ever-increasing data and traffic, and have
higher uptime requirements, moving to distributed systems is
becoming increasingly inevitable.12 Although a TCP connection
can be made to look somewhat like a file, I don’t think that’s the
right answer: it only works if both sides of the connection are

Bringing the Unix Philosophy to the Twenty-First Century | 121

http://queue.acm.org/detail.cfm?id=2482856
http://queue.acm.org/detail.cfm?id=2482856
http://dx.doi.org/10.1145/2466486.2482856

13 Bert Hubert: “The ultimate SO_LINGER page, or: why is my tcp not reliable,”

blog.netherlabs.nl, 18 January 2009.

14 Ronald Duncan: “Text File formats – ASCII Delimited Text – Not CSV or TAB delimi‐

ted text,” ronaldduncan.wordpress.com, 31 October 2009.

15 Gwen Shapira: “The problem of managing schemas,” radar.oreilly.com, 4 November

2014.

up, and it has somewhat messy edge case semantics.13 TCP is
good, but by itself it’s too low-level to serve as a distributed pipe
implementation.

• A Unix pipe is designed to have a single sender process and a
single recipient. You can’t use pipes to send output to several
processes, or to collect input from several processes. (You can

branch a pipeline by using tee, but a pipe itself is always one-
to-one.)

• ASCII text (or rather, UTF-8) is great for making data easily
explorable, but it quickly becomes messy. Every process needs
to be set up with its own input parsing: first breaking the byte
stream into records (usually separated by newline, though some

advocate 0x1e, the ASCII record separator).14 Then, a record

needs to be broken up into fields, like the $7 in the awk example
(Figure 4-1). Separator characters that appear in the data need

to be escaped somehow. Even a fairly simple tool like xargs has
about half a dozen command-line options to specify how its
input should be parsed. Text-based interfaces work tolerably
well, but in retrospect, I am pretty sure that a richer data model
with explicit schemas would have worked better.15

• Unix processes are generally assumed to be fairly short-running.
For example, if a process in the middle of a pipeline crashes,
there is no way for it to resume processing from its input pipe—
the entire pipeline fails and must be re-run from scratch. That’s
no problem if the commands run only for a few seconds, but if
an application is expected to run continuously for years, you
need better fault tolerance.

I believe we already have an approach that overcomes these down‐
sides while retaining the Unix philosophy’s benefits: Kafka and
stream processing.

122 | Chapter 4: The Unix Philosophy of Distributed Data

https://web.archive.org/web/20150820071841/http://blog.netherlabs.nl/articles/2009/01/18/the-ultimate-so_linger-page-or-why-is-my-tcp-not-reliable
https://ronaldduncan.wordpress.com/2009/10/31/text-file-formats-ascii-delimited-text-not-csv-or-tab-delimited-text/
https://ronaldduncan.wordpress.com/2009/10/31/text-file-formats-ascii-delimited-text-not-csv-or-tab-delimited-text/
http://radar.oreilly.com/2014/11/the-problem-of-managing-schemas.html

16 Jay Kreps: “Why local state is a fundamental primitive in stream processing,”

radar.oreilly.com, 31 July 2014.

Figure 4-19. The data flow between stream processing jobs, using
Kafka for message transport, resembles a pipeline of Unix tools.

When you look at it through the Unix lens, Kafka looks quite like
the pipe that connects the output of one process to the input of
another (Figure 4-19). And a stream processing framework like

Samza looks quite like a standard library that helps you read stdin

and write stdout (along with a few helpful additions, such as a
deployment mechanism, state management,16 metrics, and monitor‐
ing).

The Kafka Streams library and Samza apply this composable design
more consistently than other stream processing frameworks. In
Storm, Spark Streaming, and Flink, you create a topology (process‐
ing graph) of stream operators (bolts), which are connected through
the framework’s own mechanism for message transport. In Kafka
Streams and Samza, there is no separate message transport protocol:
the communication from one operator to the next always goes via

Kafka, just like Unix tools always go via stdout and stdin. The core

Bringing the Unix Philosophy to the Twenty-First Century | 123

http://radar.oreilly.com/2014/07/why-local-state-is-a-fundamental-primitive-in-stream-processing.html

advantage is that they can leverage the guarantees provided by Kafka
for reliable, large-scale, messaging.

Kafka Streams offers both a low-level processor API as well as a DSL
for defining stream processing operations. Both Kafka Streams and
Samza have a fairly low-level programming model that is very flexi‐
ble: each operator can be deployed independently (perhaps by dif‐
ferent teams), the processing graph can be gradually extended as
new applications emerge, and you can add new consumers (e.g., for
monitoring purposes) at any point in the processing graph.

However, as mentioned previously, Unix pipes have some problems.
They are good for building quick, hacky data exploration pipelines,
but they are not a good model for large applications that need to be
maintained for many years. If we are going to build new systems
using the Unix philosophy, we will need to address those problems.

Figure 4-20. How Kafka addresses the problems with Unix pipes.

Kafka addresses the downsides of Unix pipes as follows
(Figure 4-20):

• The single-machine limitation is lifted: Kafka itself is dis‐
tributed by default, and any stream processors that use it can
also be distributed across multiple machines.

124 | Chapter 4: The Unix Philosophy of Distributed Data

17 Martin Kleppmann: “Schema evolution in Avro, Protocol Buffers and Thrift,” mar‐

tin.kleppmann.com, 5 December 2012.

18 Jay Kreps: “Putting Apache Kafka to use: A practical guide to building a stream data

platform (Part 2),” confluent.io, 24 February 2015.

19 “Schema Registry,” Confluent Platform Documentation, docs.confluent.io.

• A Unix pipe connects the output of exactly one process with the
input of exactly one process, whereas a stream in Kafka can
have many producers and many consumers. Having many
inputs is important for services that are distributed across mul‐
tiple machines, and many outputs makes Kafka more like a
broadcast channel. This is very useful because it allows the same
data stream to be consumed independently for several different
purposes (including monitoring and audit purposes, which are
often outside of the application itself). Kafka consumers can
come and go without affecting other consumers.

• Kafka also provides good fault tolerance: data is replicated
across multiple Kafka nodes, so if one node fails, another node
can automatically take over. If a stream processor node fails and
is restarted, it can resume processing at its last checkpoint, so it
does not miss any input.

• Rather than a stream of bytes, Kafka provides a stream of mes‐
sages, which saves the first step of input parsing (breaking the
stream of bytes into a sequence of records). Each message is just
an array of bytes, so you can use your favorite serialization for‐
mat for individual messages: JSON, Avro, Thrift, or Protocol
Buffers are all reasonable choices.17 It’s well worth standardizing
on one encoding,18 and Confluent provides particularly good
schema management support for Avro.19 This allows applica‐
tions to work with objects that have meaningful field names,
and not have to worry about input parsing or output escaping.
It also provides good support for schema evolution without
breaking compatibility.

Bringing the Unix Philosophy to the Twenty-First Century | 125

http://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
http://www.confluent.io/blog/stream-data-platform-2/
http://www.confluent.io/blog/stream-data-platform-2/
http://docs.confluent.io/1.0/schema-registry/docs/index.html

Figure 4-21. Side-by-side comparison of Apache Kafka and Unix pipes.

There are a few more things that Kafka does differently from Unix
pipes, which are worth calling out briefly (Figure 4-21):

• As mentioned, Unix pipes provide a byte stream, whereas Kafka
provides a stream of messages. This is especially important if
several processes concurrently write to the same stream: in a
byte stream, the bytes from different writers can be interleaved,
leading to an unparseable mess. Because messages are coarser-
grained and self-contained, they can be safely interleaved, mak‐
ing it safe for multiple processes to concurrently write to the
same stream.

• Unix pipes are just a small in-memory buffer, whereas Kafka
durably writes all messages to disk. In this regard, Kafka is less
like a pipe and more like one process writing to a temporary
file, while several other processes continuously read that file

using tail -f (each consumer tails the file independently).
Kafka’s approach provides better fault tolerance because it
allows a consumer to fail and restart without skipping messages.
Kafka automatically splits those “temporary” files into segments
and garbage-collects old segments on a configurable schedule.

126 | Chapter 4: The Unix Philosophy of Distributed Data

20 Vince Buffalo: “Using Named Pipes and Process Substitution,” vincebuffalo.org, 8

August 2013.

• In Unix, if the consuming process of a pipe is slow to read the
data, the buffer fills up and the sending process is blocked from
writing to the pipe. This is a kind of backpressure. In Kafka, the
producer and consumer are more decoupled: a slow consumer
has its input buffered, so it doesn’t slow down the producer or
other consumers. As long as the buffer fits within Kafka’s avail‐
able disk space, the slow consumer can catch up later. This
makes the system less sensitive to individual slow components
and more robust overall.

• A data stream in Kafka is called a topic, and you can refer to it
by name (which makes it more like a Unix named pipe20). A
pipeline of Unix programs is usually started all at once, so the
pipes normally don’t need explicit names. On the other hand, a
long-running application usually has bits added, removed, or
replaced gradually over time, so you need names in order to tell
the system what you want to connect to. Naming also helps with
discovery and management.

Despite those differences, I still think it makes sense to think of
Kafka as Unix pipes for distributed data. For example, one thing
they have in common is that Kafka keeps messages in a fixed order
(like Unix pipes, which keep the byte stream in a fixed order). As
discussed in Chapter 2, this is a very useful property for event log
data: the order in which things happened is often meaningful and
needs to be preserved. Other types of message brokers, like AMQP
and JMS, do not have this ordering property.

Bringing the Unix Philosophy to the Twenty-First Century | 127

http://vincebuffalo.org/2013/08/08/the-mighty-named-pipe.html

Figure 4-22. Unix tools, stream processors and functional program‐
ming share a common trait: inputs are immutable, processing has no
global side-effects, and the output is explicit.

So we’ve got Unix tools and stream processors that look quite simi‐
lar. Both read some input stream, modify or transform it in some
way, and produce an output stream that is somehow derived from
the input (Figure 4-22).

Importantly, the processing does not modify the input itself: it

remains immutable. If you run sed or awk on some file, the input file
remains unmodified (unless you explicitly choose to overwrite it),
and the output is sent somewhere else. Also, most Unix tools are
deterministic; that is, if you give them the same input, they always
produce the same output. This means that you can re-run the same
command as many times as you want and gradually iterate your way
toward a working program. It’s great for experimentation, because
you can always go back to your original data if you mess up the pro‐
cessing.

This deterministic and side-effect-free processing looks a lot like
functional programming. That doesn’t mean you must use a func‐
tional programming language like Haskell (although you’re welcome
to do so if you want), but you still get many of the benefits of func‐
tional code.

128 | Chapter 4: The Unix Philosophy of Distributed Data

21 Jay Kreps: “Putting Apache Kafka to use: A practical guide to building a stream data

platform (Part 1),” confluent.io, 24 February 2015.

Figure 4-23. Loosely coupled stream processors are good for organiza‐
tional scalability: Kafka topics can transport data from one team to
another, and each team can maintain its own stream processing jobs.

The Unix-like design principles of Kafka enable building composa‐
ble systems at a large scale (Figure 4-23). In a large organization, dif‐
ferent teams can each publish their data to Kafka. Each team can
independently develop and maintain stream processing jobs that
consume streams and produce new streams. Because a stream can
have any number of independent consumers, no coordination is
required to set up a new consumer.

We’ve been calling this idea a stream data platform.21 In this kind of
architecture, the data streams in Kafka act as the communication
channel between different teams’ systems. Each team focuses on
making their particular part of the system do one thing well.
Whereas Unix tools can be composed to accomplish a data process‐
ing task, distributed streaming systems can be composed to com‐
prise the entire operation of a large organization.

Bringing the Unix Philosophy to the Twenty-First Century | 129

http://www.confluent.io/blog/stream-data-platform-1/
http://www.confluent.io/blog/stream-data-platform-1/

22 Jay Kreps: “Putting Apache Kafka to use: A practical guide to building a stream data

platform (Part 2),” confluent.io, 24 February 2015.

A Unix-like approach manages the complexity of a large system by
encouraging loose coupling: thanks to the uniform interface of
streams, different components can be developed and deployed inde‐
pendently. Thanks to the fault tolerance and buffering of the pipe
(Kafka), when a problem occurs in one part of the system, it
remains localized. And schema management22 allows changes to
data structures to be made safely so that each team can move fast
without breaking things for other teams.

To wrap up this chapter, let’s consider a real-life example of how this
works at LinkedIn (Figure 4-24).

Figure 4-24. What happens when someone views a job posting on
LinkedIn?

As you may know, companies can post their job openings on
LinkedIn, and jobseekers can browse and apply for those jobs. What
happens if a LinkedIn member (user) views one of those job post‐
ings?

The service that handles job views publishes an event to Kafka, say‐
ing something like “member 123 viewed job 456 at time 789.” Now

130 | Chapter 4: The Unix Philosophy of Distributed Data

http://www.confluent.io/blog/stream-data-platform-2/
http://www.confluent.io/blog/stream-data-platform-2/

23 Ken Goodhope, Joel Koshy, Jay Kreps, et al.: “Building LinkedIn’s Real-time Activity

Data Pipeline,” Bulletin of the IEEE Computer Society Technical Committee on Data

Engineering, volume 35, number 2, pages 33–45, June 2012.

24 Praveen Neppalli Naga: “Real-time Analytics at Massive Scale with Pinot,” engineer‐

ing.linkedin.com, 29 September 2014.

that this information is in Kafka, it can be used for many good pur‐
poses:23

Monitoring systems
Companies pay LinkedIn to post their job openings, so it’s
important that the site is working correctly. If the rate of job
views drops unexpectedly, alarms should go off because it indi‐
cates a problem that needs to be investigated.

Relevance and recommendations
It’s annoying for users to see the same thing over and over
again, so it’s good to track how many times the users have seen a
job posting and feed that into the scoring process. Keeping track
of who viewed what also allows for collaborative filtering rec‐
ommendations (people who viewed X also viewed Y).

Preventing abuse
LinkedIn doesn’t want people to be able to scrape all the jobs,
submit spam, or otherwise violate the terms of service. Know‐
ing who is doing what is the first step toward detecting and
blocking abuse.

Job poster analytics
The companies who post their job openings want to see stats (in
the style of Google Analytics) about who is viewing their post‐
ings,24 so that they can test which wording attracts the best can‐
didates.

Import into Hadoop and Data Warehouse
For LinkedIn’s internal business analytics, for senior manage‐
ment’s dashboards, for crunching numbers that are reported to
Wall Street, for evaluating A/B tests, and so on.

All of those systems are complex in their own right and are main‐
tained by different teams. Kafka provides a fault-tolerant, scalable
implementation of a pipe. A stream data platform based on Kafka
allows all of these various systems to be developed independently,
and to be connected and composed in a robust way.

Bringing the Unix Philosophy to the Twenty-First Century | 131

http://sites.computer.org/debull/A12june/A12JUN-CD.pdf
http://sites.computer.org/debull/A12june/A12JUN-CD.pdf
http://engineering.linkedin.com/analytics/real-time-analytics-massive-scale-pinot

CHAPTER 5

Turning the Database Inside Out

In the previous four chapters, we have covered a lot of ground:

• In Chapter 1, we discussed the idea of event sourcing; that is,
representing the changes to a database as a log of immutable
events. We explored the distinction between raw events (which
are optimized for writing) and aggregated summaries of events
(which are optimized for reading).

• In Chapter 2, we saw how a log (an ordered sequence of events)
can help integrate different storage systems by ensuring that
data is written to all stores in the same order.

• In Chapter 3, we discussed change data capture (CDC), a tech‐
nique for taking the writes to a traditional database and turning
them into a log. We saw how log compaction makes it possible
for us to build new indexes onto existing data from scratch
without affecting other parts of the system.

• In Chapter 4, we explored the Unix philosophy for building
composable systems and compared it to the traditional database
philosophy. We saw how a Kafka-based stream data platform
can scale to encompass the data flows in a large organization.

In this final chapter, we will pull all of those ideas together and use
them to speculate about the future of databases and data-intensive
applications. By extrapolating some current trends (such as the
growing variety of SQL and NoSQL datastores being used, the grow‐
ing mainstream use of functional programming, the increasing
interactivity of user interfaces, and the proliferation of mobile devi‐

133

ces) we can illuminate some of the path ahead: how will we be devel‐
oping applications in a few years’ time?

To figure out an answer, we will examine some aspects of traditional
database-backed applications (replication, secondary indexes, cach‐
ing, and materialized views) and compare them to the event log
approach discussed in the last few chapters. We will see that many of
the internal architectural patterns of databases are being repeated at
a larger scale on the infrastructure level.

What is happening here is very interesting: software engineers are
taking the components of databases that have been traditionally
fused together into a monolithic program, unbundling them into
separate components, independently making each of those compo‐
nents highly scalable and robust, and then putting them back
together again as a large-scale system. The final result looks some‐
what like a database, except that it is flexibly composed around the
structure of your application and operates at much larger scale. We
are taking the database architecture we know and turning it inside
out.

How Databases Are Used
To gain clarity, let’s take a few steps back and talk about databases.
What I mean is not any particular brand of database—I don’t mind
whether you’re using relational, or NoSQL, or something else. I’m
really talking about the general concept of a database, as we use it
when building applications.

Take, for example, the stereotypical web application architecture
shown in Figure 5-1.

134 | Chapter 5: Turning the Database Inside Out

Figure 5-1. Simplest-case web application architecture.

You have a client, which may be a web browser or a mobile app, and
that client talks to some kind of server-side system (a “backend”).
The backend typically implements some kind of business logic, per‐
forms access control, accepts input, and produces output. When the
backend needs to remember something for the future, it stores that
data in a database, and when it needs to look something up, it quer‐
ies a database. That’s all very familiar stuff.

The way we typically build these sorts of applications is that we
make the backend layer stateless: it processes every request inde‐
pendently, and doesn’t remember anything from one request to the
next. That has a lot of advantages: you can scale-out the backend by
just running more processes in parallel, and you can route any
request to any backend instance (they are all equally well qualified to
handle the request), so it’s easy to spread the load across multiple
machines. Any state that is required to handle a request will be
looked-up from the database on each request. That also works nicely
with HTTP because HTTP is a stateless protocol.

However, the state must go somewhere, and so we put it in the data‐
base. We are now using the database as a kind of gigantic, global,
shared, mutable state. It’s like a persistent global variable that’s
shared between all your application servers.

How Databases Are Used | 135

This approach for building database-backed applications has
worked for decades, so it can’t be all that bad. However, from time to
time it’s worth looking beyond the familiar and explore potentially
better ways of building software. For example, people who use func‐
tional programming languages say that the lack of mutable global
variables is helpful for building better software, reducing bugs, mak‐
ing code easier to reason about, and so on. Perhaps something simi‐
lar is true in database-backed applications?

The event sourcing approach we discussed in Chapter 1 is a way of
moving from the imperative world of mutable state to the functional
world of immutable values. In Chapter 4 we also noticed that pipe‐
lines of Unix tools have a functional flavor. However, so far we have
not been very clear about how to actually build systems that use
these ideas.

To try to figure out a way forward, I’d like to review four different
examples of things that databases currently do, and things that we
do with databases. These four examples will help us structure the
ideas around event streams and pave the way to applying them in
practice.

1. Replication
We previously discussed replication in Chapter 2, and observed that
leader-based replication uses a replication log to send data changes
to followers (Figure 2-18). We came across the idea again in Chap‐
ter 3: change data capture is similar to replication, except that the
follower is not another instance of the same database software, but a
different storage technology.

What does such a replication log actually look like? For example,
take the shopping cart example of Figure 1-10, in which customer
123 changes their cart to contain quantity 3 of product 999. The
update is executed on the leader, and replicated to followers. There
are several different ways by which the followers might apply this
write. One option is to send the same update query to the follower,
and it executes the same statement on its own copy of the database.
Another option is to ship the write-ahead log from the leader to the
follower.

A third option for replication, which I’ll focus on here, is called a
logical log, which you can see illustrated in Figure 5-2. In this case,

136 | Chapter 5: Turning the Database Inside Out

the leader writes out the effect that the query had—that is, which
rows were inserted, updated, or deleted—like a kind of diff.

Figure 5-2. A logical change event in a replication log indicates which
row changed and what its new value needs to be.

For an update, like in this example, the logical log identifies the row
that was changed (using a primary key or some kind of internal
tuple identifier), gives the new value of that row, and perhaps also
the old value.

This might seem like nothing special, but notice that something
interesting has happened (Figure 5-3).

How Databases Are Used | 137

Figure 5-3. In a logical replication log, imperative commands are
transformed into immutable change events.

At the top of Figure 5-3, we have the update statement, an impera‐
tive statement describing the state mutation. It is an instruction to
the database, telling it to modify certain rows in the database that
match certain conditions.

On the other hand, when the write is replicated from the leader to
the follower as part of the logical log, it takes a different form: it
becomes an event, stating that at a particular point in time, a partic‐
ular customer changed the quantity of a particular product in their
cart from 1 to 3. This is a fact—even if the customer later removes
the item from their cart, or changes the quantity again, or goes away
and never comes back, that doesn’t change the fact that this state
change occurred. The fact always remains true.

We can see that a change event in the replication log actually looks
quite similar to an event in the sense of event sourcing (Chapter 1).
Thus, even if you use your database in the traditional way—over‐
writing old state with new state—the database’s internal replication
mechanism may still be translating those imperative statements into
a stream of immutable events.

138 | Chapter 5: Turning the Database Inside Out

Hold that thought for now; I’m going to talk about some completely
different things and return to this idea later.

2. Secondary Indexes
Our second example of things that databases do is secondary index‐
ing. You’re probably familiar with secondary indexes; they are the
bread and butter of relational databases.

Let’s use the shopping cart example again (Figure 5-4): to efficiently
find all the items that a particular customer has in their cart, you

need an index on customer_id. If you also create an index on prod

uct_id, you can efficiently find all the carts that contain a particular
product.

Figure 5-4. Secondary indexes allow you to efficiently look up rows by
their value in a particular column.

What does the database do when you run one of these CREATE

INDEX queries? It scans over the entire table, and it creates an auxili‐
ary data structure for each index (Figure 5-5).

How Databases Are Used | 139

Figure 5-5. Each index is a separate data structure that is derived from
the rows in the table.

An index is a data structure that represents the information in the
base table in some different way. In this case, the index is a key-
value-like structure: the keys are the contents of the column that
you’re indexing, and the values are the rows that contain this partic‐
ular key.

Put another way: to build the index for the customer_id column,
the database takes all the values that appear in that column, and uses
them as keys in a dictionary. A value points to all occurrences of that
value—for example, the index entry 123 points to all of the rows that

have a customer_id of 123. This index construction is illustrated in
Figure 5-6.

140 | Chapter 5: Turning the Database Inside Out

Figure 5-6. Values in the table become keys in the index.

The important point here is that the process of going from the base
table to the indexes is completely mechanical. You simply tell the
database that you want a particular index to exist, and it goes away
and builds that index for you.

The index doesn’t add any new information to the database—it just
represents the same data in a different form. (Put another way, if you
drop the index, that doesn’t delete any data from your database; see
also Figure 2-5.) An index is a redundant data structure that only
exists to make certain queries faster, and that can be entirely derived
from the original table (Figure 5-7).

How Databases Are Used | 141

Figure 5-7. An index is derived from the data in the table by using a
deterministic transformation.

Creating an index is essentially a transformation which takes a data‐
base table as input and produces an index as output. The transfor‐
mation consists of going through all the rows in the table, picking
out the field that you want to index, and restructuring the data so
that you can look up by that field. That transformation process is
built into the database, so you don’t need to implement it yourself.
You just tell the database that you want an index on a particular field
to exist, and it does all the work of building it.

Here’s another great thing about indexes: whenever the data in the
underlying table changes, the database automatically updates the
indexes to be consistent with the new data in the table. In other
words, this transformation function which derives the index from
the original table is not just applied once when you create the index:
it’s applied continuously.

With many databases, these index updates are even done in a trans‐
actionally consistent way. This means that any later transactions will
see the data in the index in the same state as it is in the underlying
table. If a transaction aborts and rolls back, the index modifications
are also rolled back. This is a really great feature that we often don’t
appreciate!

142 | Chapter 5: Turning the Database Inside Out

Figure 5-8. The CONCURRENTLY option in PostgreSQL allows an index
to be built without locking the base table for writes.

Moreover, some databases let you build an index at the same time as
continuing to process write queries. In PostgreSQL, for example,

you can say CREATE INDEX CONCURRENTLY (Figure 5-8). On a large
table, creating an index could take several hours, and on a produc‐
tion database, you wouldn’t want to have to stop writing to the table
while the index is being built. The index builder needs to be a back‐
ground process that can run while your application is simultane‐
ously reading and writing to the database as usual.

The fact that databases can do this is quite impressive. After all, to
build an index, the database must scan the entire table contents, but
those contents are changing at the same time as the scan is happen‐
ing. The index builder is tracking a moving target. At the end, the
database ends up with a transactionally consistent index, despite the
fact that the data was changing concurrently.

To do this, the database needs to build the index from a consistent
snapshot at one point in time. It also needs to keep track of all the
changes that occurred since that snapshot while the index build was
in progress. The procedure is remarkably similar to what we saw in
Chapter 3 in the context of change capture (Figure 3-2). Creating a

How Databases Are Used | 143

new index outside of the database (Figure 3-7) is not that different
from creating a new index inside of the database.

So far, we’ve discussed two aspects of databases: replication and sec‐
ondary indexing. Let’s move on to the third: caching.

3. Caching
What I’m talking about here is caching that is explicitly done by the
application. (Caching also happens automatically at various levels,
such as the operating system’s page cache and the CPU’s cache, but
that’s not what I’m referring to here.)

Suppose that you have a website that becomes popular, and it
becomes too expensive or too slow to hit the database for every web
request, so you introduce a caching layer—often implemented by
using memcached or Redis or something of that sort. Often this
cache is managed in application code, which typically looks some‐
thing like Figure 5-9.

Figure 5-9. A read-through cache managed in application code.

When a request arrives at the application, you first look in a cache to
see whether the data you want is already there. The cache lookup is
typically by some key that describes the data you want. If the data is
in the cache, you can return it straight to the client.

144 | Chapter 5: Turning the Database Inside Out

1 Phil Karlton: “There are only two hard things in Computer Science: cache invalidation

and naming things.” Quoted on martinfowler.com.

2 David Heinemeier Hansson: “How Basecamp Next got to be so damn fast without

using much client-side UI,” signalvnoise.com, 18 February 2012.

If the data you want isn’t in the cache, that’s a cache miss. You then
go to the underlying database and query the data that you want. On
the way out, the application also writes that data to the cache so that
it’s there for the next request that needs it. The thing it writes to the
cache is whatever the application would have wanted to see there in
the first place. Then, the application returns the data to the client.

This is a very common pattern, but there are several big problems
with it (Figure 5-10).

Figure 5-10. Problems with application-managed read-through caches.

Cache invalidation is considered by some to be a difficult problem
to the point of cliché.1 When data in the underlying database
changes, how do you know which entries in the cache to expire or
update? Figuring out which database change affects which cache
entries is tractable for simple data models, and algorithms such as
generational caching and russian-doll caching2 are used. For more
complex data dependencies, invalidation algorithms become com‐

How Databases Are Used | 145

http://martinfowler.com/bliki/TwoHardThings.html
http://martinfowler.com/bliki/TwoHardThings.html
https://signalvnoise.com/posts/3112-how-basecamp-next-got-to-be-so-damn-fast-without-using-much-client-side-ui
https://signalvnoise.com/posts/3112-how-basecamp-next-got-to-be-so-damn-fast-without-using-much-client-side-ui

plex, brittle, and error-prone. Some applications side-step the prob‐
lem by using only a time-to-live (expiry time) and accepting that
they sometimes read stale data from the cache.

Another problem is that this architecture is very prone to race con‐
ditions. In fact, it is an example of the dual-writes problem that we
saw in Chapter 2 (Figure 2-9): several clients concurrently accessing
the same data can cause the cache to become inconsistent with the
database.

A third problem is cold start. If you reboot your memcached servers
and they lose all their cached contents, suddenly every request is a
cache miss, the database is overloaded because of the sudden surge
in requests, and you’re in a world of pain. If you want to create a
new cache, you need some way of bootstrapping its contents without
overloading other parts of the system.

So, here we have a contrast (Figure 5-11). On the one hand, creating
a secondary index in a database is beautifully simple, one line of
SQL—the database handles it automatically, keeping everything up-
to-date and even making the index transactionally consistent. On
the other hand, application-level cache maintenance is a complete
mess of complicated invalidation logic, race conditions, and opera‐
tional problems.

146 | Chapter 5: Turning the Database Inside Out

Figure 5-11. Databases hide the complexity of creating a secondary
index behind a simple interface, but application-level cache mainte‐
nance is a complete mess.

Why should it be that way? Secondary indexes and caches are not
fundamentally different. We said earlier that a secondary index is
just a redundant data structure on the side, which structures the
same data in a different way, in order to speed up read queries. If
you think about it, a cache is also the result of taking your data in
one form (the form in which it’s stored in the database) and trans‐
forming it into a different form for faster reads. In other words, the
contents of the cache are derived from the contents of the database
(Figure 5-12) — very similar to an index.

How Databases Are Used | 147

Figure 5-12. Similarly to an index, the contents of a cache are derived
from the contents of the database.

We said that a secondary index is built by picking out one field from
every record and using that as the key in a dictionary (Figure 5-7).
In the case of a cache, we may apply an arbitrary function to the
data (Figure 5-12): the data from the database may have gone
through some kind of business logic or rendering before it’s put in
the cache, and it may be the result of joining several records from
different tables. But, the end result is similar: if you lose your cache,
you can rebuild it from the underlying database; thus, the contents
of the cache are derived from the database.

In a read-through cache, this transformation happens on the fly,
when there is a cache miss. However, we could perhaps imagine
making the process of building and updating a cache more system‐
atic, and more similar to secondary indexes. Let’s return to that idea
later.

Now, let’s move on to the fourth idea about databases: materialized
views.

148 | Chapter 5: Turning the Database Inside Out

4. Materialized Views
You might already know what materialized views are, but let me
explain them briefly in case you’ve not previously come across them.
You might be more familiar with “normal” views—non-materialized
views, or virtual views, or whatever you want to call them.

They work like this: in a relational database, where views are com‐

mon, you would create a view by saying “CREATE VIEW view

name...” followed by a SELECT query (Figure 5-13).

Figure 5-13. A non-materialized (virtual) view is just an alias for a
query; when you read from the view, the database translates it into the
underlying query.

When you look at this view in the database, it looks somewhat like a
table—you can use it in read queries like any other table. And when

you do this, say you SELECT * from that view, the database’s query
planner actually rewrites the query into the underlying query that
you used in the definition of the view.

So, you can think of a view as a kind of convenient alias, a wrapper
that allows you to create an abstraction, hiding a complicated query
behind a simpler interface—but it has no consequences for perfor‐
mance or data storage.

How Databases Are Used | 149

Contrast that with a materialized view, which is defined using almost
identical syntax (see Figure 5-14).

Figure 5-14. Materialized view: very similar syntax, very different
implementation.

You also define a materialized view in terms of a SELECT query; the

only syntactic difference is that you say CREATE MATERIALIZED VIEW

instead of CREATE VIEW. However, the implementation is totally dif‐
ferent.

When you create a materialized view, the database starts with the

underlying tables—that is, the tables you’re querying in the SELECT

statement of the view (“bar” in the example). The database scans

over the entire contents of those tables, executes that SELECT query
on all of the data, and copies the results of that query into something
like a temporary table.

The results of this query are actually written to disk, in a form that’s
very similar to a normal table. And that’s really what “materialized”
means in this context: the view’s query has been executed, and the
results written to disk.

Remember that with the non-materialized view, the database would
expand the view into the underlying query at query time. On the
other hand, when you query a materialized view, the database can

150 | Chapter 5: Turning the Database Inside Out

read its contents directly from the materialized query result because
the view’s underlying query has already been executed ahead of
time. This is especially useful if the underlying query is expensive.

If you’re thinking, “this seems like a cache of query results,” you
would be right—that’s exactly what it is. However, the big difference
between a materialized view and application-managed caches is the
responsibility for keeping it up to date.

Figure 5-15. Like caches and secondary indexes, materialized views
are also redundant data that is derived from the underlying tables.

With a materialized view, you declare once how you want the mate‐
rialized view to be defined, and the database takes care of building
that view from a consistent snapshot of the underlying tables
(Figure 5-15, much like building a secondary index). Moreover,
when the data in the underlying tables changes, the database takes
responsibility for maintaining the materialized view, keeping it up-
to-date. Some databases do this materialized view maintenance on
an ongoing basis, and some require you to periodically refresh the
view so that changes take effect, but you certainly don’t have to do
cache invalidation in your application code.

An advantage of application-managed caches is that you can apply
arbitrary business logic to the data before storing it in the cache so

How Databases Are Used | 151

that you can do less work at query time or reduce the amount of
data you need to cache. Doing the same in a materialized view
would require that you run your application code in the database as
a stored procedure (Figure 4-10). As discussed in Chapter 4, this is
possible in principle, but often operationally problematic in prac‐
tice. However, materialized views address the concurrency control
and bootstrapping problems of caches (Figure 5-10).

Summary: Four Database-Related Ideas
Let’s recap the four ideas we discussed: replication, secondary index‐
ing, caching, and materialized views (Figure 5-16). What they all
have in common is that they are dealing with derived data in some
way: some secondary data structure is derived from an underlying,
primary dataset, via a transformation process.

Figure 5-16. All four aspects of a database deal with derived data.

In Figure 5-16, I’ve given each point a rating (smile, neutral, frown)
to indicate how well it works. Here’s a quick recap:

Replication
We first discussed replication; that is, keeping a copy of the
same data on multiple machines. It generally works very well.
There are some operational quirks with some databases, and

152 | Chapter 5: Turning the Database Inside Out

some of the tooling is a bit weird. But on the whole, it’s mature,
well understood, and well supported.

Secondary indexing
Similarly, secondary indexing works very well. You can build a
secondary index concurrently with processing write queries,
and the database somehow manages to do this in a transaction‐
ally consistent way.

Caching
Application-level read-through caching is a complete mess of
complexity, race conditions, and operational problems.

Materialized views
Materialized views are so-so: the idea is good, but the way
they’re implemented is not what you’d want from a modern
application development platform. Maintaining the materialized
view puts additional load on the database, whereas the entire
point of a cache is to reduce load on the database!

Materialized Views: Self-Updating Caches
There’s something really compelling about the idea of materialized
views. I see a materialized view almost as a kind of cache that magi‐
cally keeps itself up to date. Instead of putting all of the complexity
of cache invalidation in the application (risking race conditions and
all of the problems we have discussed), materialized views say that
cache maintenance should be the responsibility of the data infra‐
structure.

So, let’s think about this: can we reinvent materialized views, imple‐
ment them in a modern and scalable way, and use them as a general
mechanism for cache maintenance? If we started with a clean slate,
without the historical baggage of existing databases, what would the
ideal architecture for applications look like (Figure 5-17)?

Materialized Views: Self-Updating Caches | 153

Figure 5-17. What would materialized views look like if we started
with a clean slate?

In Chapter 3, we discussed building a completely new index using
the events in a log-compacted Kafka topic and then keeping it up-
to-date by continuously consuming events from the log and apply‐
ing them to the index. Whether we call this an index, or a cache, or a
materialized view does not make a big difference: they are all
derived representations of the data in the log (Figure 5-18).

154 | Chapter 5: Turning the Database Inside Out

Figure 5-18. An index, a cache and a materialized view are all just
projections of the log into a read-optimized structure.

The difference is that an index is typically built by extracting one
field from an event, and using it as lookup key (Figure 5-6), whereas
constructing a cache or a materialized view might require more
complex transformations:

• In a materialized view, you might want data from several sour‐
ces to be joined together into a denormalized object, to save
having to perform the join at read time. For example, in
Figure 1-17, each tweet contains only the user_id of the author,
but when reading tweets, you want the tweet to be joined with
the user profile information (the username, profile photo, etc.).

• The materialized view can contain aggregate functions such as
sum or count (e.g., the number of likes in Figure 1-20, or the
count of unread messages in Figure 2-10).

• You might need some arbitrary business logic to be applied
(e.g., to honor the user’s privacy settings).

Stream processing frameworks allow you to implement such joins,
aggregations, and arbitrary business logic—we will look at an exam‐
ple shortly.

Materialized Views: Self-Updating Caches | 155

Let’s also be clear about how a materialized view is different from a
cache (Figure 5-19).

Figure 5-19. Advantages of a materialized view over an application-
managed read-through cache.

As discussed, an application-managed read-through cache is invali‐
dated or updated directly by application code, whereas a material‐
ized view is maintained by consuming a log. This has some
important advantages:

• A cache is filled on demand when there is a cache miss (so the
first request for a given object is always slow, and you have the
cold-start problem mentioned in Figure 5-10). By contrast, a
materialized view is precomputed; that is, its entire contents are
computed before anyone asks for it—just like an index. This
means there is no such thing as a cache miss: if an item doesn’t
exist in the materialized view, it doesn’t exist in the database.
There is no need to fall back to some other underlying database.
(This doesn’t mean the entire view has to be in memory: just
like an index, it can be written to disk, and the hot parts will
automatically be kept in memory in the operating system’s page
cache.)

156 | Chapter 5: Turning the Database Inside Out

• With a materialized view there is a well-defined translation pro‐
cess that takes the write-optimized events in the log and trans‐
forms them into the read-optimized representation in the view.
By contrast, in the typical read-through caching approach, the
cache management logic is deeply interwoven with the rest of
the application, making it prone to bugs and difficult to reason
about.

• That translation process runs in a stream processor which you
can test, deploy, monitor, debug, scale, and maintain independ‐
ently from the rest of your application. The stream processor
consumes events in log order, making it much less susceptible to
race conditions. If it fails and is restarted, it just keeps going
from where it left off. If you deploy bad code, you can re-run
the stream processor on historical data to fix up its mistakes.

• With log compaction, you can build a brand new index by pro‐
cessing a stream from the beginning (Figure 3-7); the same is
true of materialized views. If you want to present your existing
data in some new way, you can simply create a new stream pro‐
cessing job, consume the input log from the beginning, and thus
build a completely new view onto all the existing data. You can
then maintain both views in parallel, gradually move clients to
the new view, run A/B tests across the two views, and eventually
discard the old view. No more scary stop-the-world schema
migrations.

Example: Implementing Twitter
Let’s make materialized views more concrete by looking at an exam‐
ple. In Chapter 1, we looked at how you might implement a Twitter-
like messaging service. The most common read operation on that
service is requesting the “home timeline”; that is, you want to see all
recent tweets by users you follow (including username and profile
picture for the sender of each tweet, see Figure 1-17).

In Figure 1-18, we saw a SQL query for a home timeline, but we
noted that it is too slow to execute that query on every read. Instead,
we need to precompute each user’s home timeline ahead of time so
that it’s already there when the user asks for it. Sounds a bit like a
materialized view, doesn’t it?

Materialized Views: Self-Updating Caches | 157

3 Raffi Krikorian: “Timelines at Scale,” at QCon San Francisco, November 2012.

4 Martin Kleppmann: “Samza newsfeed demo,” github.com, September 2014.

No existing database is able to provide materialized views at Twit‐
ter’s scale, but such materialized timelines can be implemented using
stream processing tools.3 Figure 5-20 shows a sketch of how you
might do this.4

Figure 5-20. Implementing Twitter timelines by using a stream process‐
ing system.

To start with, you need to make all data sources available as event
streams, either by using CDC (Chapter 3) or by writing events
directly to a log (Chapter 2). In this example, we have event streams
from three data sources:

Tweets
Whenever a tweet is sent or retweeted, that is an event. It is
quite natural to think of these as a stream.

User profiles
Every time a user changes their username or profile picture, that
is a profile update event. This stream needs to be log-

158 | Chapter 5: Turning the Database Inside Out

http://www.infoq.com/presentations/Twitter-Timeline-Scalability
https://github.com/ept/newsfeed

5 Raffi Krikorian: “Timelines at Scale,” at QCon San Francisco, November 2012.

compacted, so that you can reconstruct the latest state of all user
profiles from the stream.

Follow graph
Every time someone follows or unfollows another user, that’s an
event. The full history of these events determines who is follow‐
ing whom.

If you put all of these streams in Kafka, you can create materialized
views by writing stream processing jobs using Kafka Streams or
Samza. For example, you can write a simple job that counts how
many times a tweet has been retweeted, generating a “retweet count”
materialized view.

You can also join streams together. For example, you can join tweets
with user profile information, so the result is a stream of tweets in
which each tweet carries a bit of denormalized profile information
(e.g., username and profile photo of the sender). When someone
updates their profile, you can decide whether the change should take
effect only for their future tweets, or also for their most recent 100
tweets, or for every tweet they ever sent—any of these can be imple‐
mented in the stream processor. (It may be inefficient to rewrite
thousands of cached historical tweets with a new username, but this
is something you can easily adjust, as appropriate.)

Next, you can join tweets with followers. By collecting follow/unfol‐
low events, you can build up a list of all users who currently follow
user X. When user X tweets something, you can scan over that list,
and deliver the new tweet to the home timeline of each of X’s follow‐
ers (Twitter calls this fan-out5).

Thus, the home timelines are like a mailbox, containing all the
tweets that the user should see when they next log in. That mailbox
is continually updated as people send tweets, update their profiles,
and follow and unfollow one another. We have effectively created a
materialized view for the SQL query in Figure 1-18. Note that the
two joins in that query correspond to the two stream joins in
Figure 5-20: the stream processing system is like a continuously run‐
ning query execution graph!

Materialized Views: Self-Updating Caches | 159

http://www.infoq.com/presentations/Twitter-Timeline-Scalability

The Unbundled Database
What we see here is an interesting pattern: derived data structures
(indexes, materialized views) have traditionally been implemented
internally within a monolithic database, but now we are seeing simi‐
lar structures increasingly being implemented at the application
level, using stream processing tools.

This trend is driven by need: nobody would want to re-implement
these features in a production system if existing databases already
did the job well enough. Building database-like features is difficult:
it’s easy to introduce bugs, and many storage systems have high reli‐
ability requirements. Our discussion of read-through caching shows
that data management at the application level can get very messy.

However, for better or for worse, this trend is happening. We are not
going to judge it; we’re going to try only to understand it and learn
some lessons from the last few decades of work on databases and
operating systems.

Earlier in this chapter (Figure 5-2) we observed that a database’s rep‐
lication log can look quite similar to an event log that you might use
for event sourcing. The big difference is that an event log is an
application-level construct, whereas a replication log is traditionally
considered to be an implementation detail of a database
(Figure 5-21).

160 | Chapter 5: Turning the Database Inside Out

6 Jay Kreps: “The Log: What every software engineer should know about real-time data’s

unifying abstraction,” engineering.linkedin.com, 16 December 2013.

Figure 5-21. In traditional database architecture, the replication log is
considered an implementation detail, not part of the database’s public
API.

SQL queries and responses are traditionally the database’s public
interface—and the replication log is an aspect that is hidden by that
abstraction. (Change data capture is often retrofitted and not really
part of the public interface.)

One way of interpreting stream processing is that it turns the data‐
base inside out: the commit log or replication log is no longer relega‐
ted to being an implementation detail; rather, it is made a first-class
citizen of the application’s architecture. We could call this a log-
centric architecture, and interestingly, it begins to look somewhat like
a giant distributed database:6

• You can think of various NoSQL databases, graph databases,
time series databases, and full-text search servers as just being
different index types. Just like a relational database might let
you choose between a B-Tree, an R-Tree and a hash index (for

Materialized Views: Self-Updating Caches | 161

http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying

7 “Apache BookKeeper,” Apache Software Foundation, bookkeeper.apache.org.

8 Gavin Li, Jianqiu Lv, and Hang Qi: “Pistachio: co-locate the data and compute for fast‐

est cloud compute,” yahooeng.tumblr.com, 13 April 2015.

example), your data system might write data to several different
data stores in order to efficiently serve different access patterns.

• The same data can easily be loaded into Hadoop, a data ware‐
house, or analytic database (without complicated ETL pro‐
cesses, because event streams are already analytics friendly) to
provide business intelligence.

• The Kafka Streams library and stream processing frameworks
such as Samza are scalable implementations of triggers, stored
procedures and materialized view maintenance routines.

• Datacenter resource managers such as Mesos or YARN provide
scheduling, resource allocation, and recovery from physical
machine failures.

• Serialization libraries such as Avro, Protocol Buffers, or Thrift
handle the encoding of data on the network and on disk. They
also handle schema evolution (allowing the schema to be
changed over time without breaking compatibility).

• A log service such as Apache Kafka or Apache BookKeeper7 is
like the database’s commit log and replication log. It provides
durability, ordering of writes, and recovery from consumer fail‐
ures. (In fact, people have already built databases that use Kafka
as transaction/replication log.8)

In a traditional database, all of those features are implemented in a
single monolithic application. In a log-centric architecture, each fea‐
ture is provided by a different piece of software. The result looks
somewhat like a database, but with its individual components
“unbundled” (Figure 5-22).

162 | Chapter 5: Turning the Database Inside Out

https://bookkeeper.apache.org/
http://yahooeng.tumblr.com/post/116291838351/pistachio-co-locate-the-data-and-compute-for
http://yahooeng.tumblr.com/post/116291838351/pistachio-co-locate-the-data-and-compute-for

9 Jun Rao: “The value of Apache Kafka in Big Data ecosystem,” odbms.org, 16 June 2015.

Figure 5-22. Updating indexes and materialized views based on writes
in a log: more or less what a traditional database already does inter‐
nally, at smaller scale.

In the unbundled approach, each component is a separately devel‐
oped project, and many of them are open source. Each component
is specialized: the log implementation does not try to provide
indexes for random-access reads and writes—that service is pro‐
vided by other components. The log can therefore focus its effort on
being a really good log: it does one thing well (cf. Figure 4-3). A simi‐
lar argument holds for other parts of the system.

The advantage of this approach is that each component can be
developed and scaled independently, providing great flexibility and
scalability on commodity hardware.9 It essentially brings the Unix
philosophy to databases: specialized tools are composed into an
application that provides a complex service.

The downside is that there now many different pieces to learn about,
deploy, and operate. Many practical details need to be figured out:
how do we deploy and monitor these various components, how do

Materialized Views: Self-Updating Caches | 163

http://www.odbms.org/2015/06/the-value-of-apache-kafka-in-big-data-ecosystem/

10 Neha Narkhede: “Announcing the Confluent Platform 2.0,” confluent.io, 8 December,

2015.

we make the system robust to various kinds of fault, how do we pro‐
ductively write software in this kind of environment (Figure 5-23)?

Figure 5-23. These ideas are new, and many challenges lie ahead on
the path toward maturity.

Because many of the components were designed independently,
without composability in mind, the integrations are not as smooth
as one would hope (see change data capture, for example). And
there is not yet a convincing equivalent of SQL or the Unix shell—
that is, a high-level language for concisely describing data flows—for
log-centric systems and materialized views. All in all, these systems
are not nearly as elegantly integrated as a monolithic database from
a single vendor.

Yet, there is hope. Linux distributions and Hadoop distributions are
also assembled from many small parts written by many different
groups of people, and they nevertheless feel like reasonably coherent
products. We can expect the same will be the case with a Stream
Data Platform.10

164 | Chapter 5: Turning the Database Inside Out

http://www.confluent.io/blog/announcing-the-confluent-platform-1-0/

This log-centric architecture for applications is definitely not going
to replace databases, because databases are still needed to serve the
materialized views. Also, data warehouses and analytic databases
will continue to be important for answering ad hoc, exploratory
queries.

I draw the comparison between stream processing and database
architecture only because it helps clarify what is going on here: at
scale, no single tool is able to satisfy all use cases, so we need to find
good patterns for integrating a diverse set of tools into a single sys‐
tem. The architecture of databases provides a good set of patterns.

Streaming All the Way to the User Interface
Before we wrap up, there is one more thing we should talk about in
the context of event streams and materialized views. (I saved the best
for last!)

Imagine what happens when a user of your application views some
data. In a traditional database architecture, the data is loaded from a
database, perhaps transformed with some business logic, and per‐
haps written to a cache. Data in the cache is rendered into a user
interface in some way—for example, by rendering it to HTML on
the server, or by transferring it to the client as JSON and rendering
it on the client.

The result of template rendering is some kind of structure describ‐
ing the user interface layout: in a web browser, this would be the
HTML DOM, and in a native application this would be using the
operating system’s UI components. Either way, a rendering engine
eventually turns this description of UI components into pixels in
video memory, and this is what the graphics device actually displays
on the screen.

When you look at it like this, it looks very much like a data transfor‐
mation pipeline (Figure 5-24). You can think of each lower layer as a
materialized view onto the upper layer: the cache is a materialized
view of the database (the cache contents are derived from the data‐
base contents); the HTML DOM is a materialized view of the cache
(the HTML is derived from the JSON stored in the cache); and the
pixels in video memory are a materialized view of the HTML DOM
(the browser rendering engine derives the pixels from the UI lay‐
out).

Streaming All the Way to the User Interface | 165

11 “React,” Facebook Inc., facebook.github.io.

12 “AngularJS,” Google, Inc., angularjs.org.

13 “Ember,” Tilde Inc., emberjs.com.

Figure 5-24. Rendering data on screen requires a sequence of transfor‐
mation steps, not unlike materialized views.

Now, how well does each of these transformation steps work? I
would argue that web browser rendering engines are brilliant feats
of engineering. You can use JavaScript to change some CSS class, or
have some CSS rules conditional on mouse-over, and the rendering
engine automatically figures out which rectangle of the page needs
to be redrawn as a result of the changes. It does hardware-
accelerated animations and even 3D transformations. The pixels in
video memory are automatically kept up to date with the underlying
DOM state, and this very complex transformation process works
remarkably well.

What about the transformation from data objects to user interface
components? For now, I consider it “so-so,” because the techniques
for updating user interface based on data changes are still quite new.
However, they are rapidly maturing: on the web, frameworks such as
Facebook’s React,11 Angular,12 and Ember13 are enabling user inter‐

166 | Chapter 5: Turning the Database Inside Out

http://facebook.github.io/react/
https://angularjs.org/
http://emberjs.com/

14 Evan Czaplicki: “Elm,” elm-lang.org.

faces that can be updated from a stream, and Functional Reactive
Programming (FRP) languages such as Elm14 are in the same area.
There is a lot of activity in this field, and it is heading in a good
direction.

The transformation from database contents to cache entries is now
the weakest link in this entire data-transformation pipeline. The
problem is that a cache is request-oriented: a client can read from it,
but if the data subsequently changes, the client doesn’t find out
about the change (it can poll periodically, but that soon becomes
inefficient).

We are now in the bizarre situation in which the UI logic and the
browser rendering engine can dynamically update the pixels on the
screen in response to changes in the underlying data, but the
database-driven backend services don’t have a way of notifying cli‐
ents about data changes. To build applications that quickly respond
to user input (such as real-time collaborative apps), we need to make
this pipeline work smoothly, end to end.

Fortunately, if we build materialized views that are maintained by
using stream processors, as discussed in this chapter, we have the
missing piece of the pipeline (Figure 5-25).

Streaming All the Way to the User Interface | 167

http://elm-lang.org/

15 “WebSockets,” Mozilla Developer Network, developer.mozilla.org.

16 “Server-sent events,” Mozilla Developer Network, developer.mozilla.org.

Figure 5-25. If you update materialized views by using an event
stream, you can also push changes to those views to clients.

When a client reads from a materialized view, it can keep the net‐
work connection open. If that view is later updated, due to some
event that appeared in the stream, the server can use this connection
to notify the client about the change (for example, using a Web‐
Socket15 or Server-Sent Events16). The client can then update its user
interface accordingly.

This means that the client is not just reading the view at one point in
time, but actually subscribing to the stream of changes that may
subsequently happen. Provided that the client’s Internet connection
remains active, the server can push any changes to the client, and
the client can immediately render it. After all, why would you ever
want outdated information on your screen if more recent informa‐
tion is available? The notion of static web pages, which are requested
once and then never change, is looking increasingly anachronistic.

However, allowing clients to subscribe to changes in data requires a
big rethink of the way we write applications. The request-response

168 | Chapter 5: Turning the Database Inside Out

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events

model is very deeply engrained in our thinking, in our network pro‐
tocols and in our programming languages: whether it’s a request to a
RESTful service, or a method call on an object, the assumption is
generally that you’re going to make one request, and get one
response. In most APIs there is no provision for an ongoing stream
of responses.

Figure 5-26. To support dynamically updated views we need to move
away from request/response RPC models and use push-based publish-
subscribe dataflow everywhere.

This will need to change. Instead of thinking of requests and
responses, we need to begin thinking of subscribing to streams and
notifying subscribers of new events (Figure 5-26). This needs to
happen through all the layers of the stack—the databases, the client
libraries, the application servers, the business logic, the frontends,
and so on. If you want the user interface to dynamically update in
response to data changes, that will only be possible if we systemati‐
cally apply stream thinking everywhere so that data changes can
propagate through all the layers.

Most RESTful APIs, database drivers, and web application frame‐
works today are based on a request/response assumption, and they
will struggle to support streaming dataflow. In the future, I think
we’re going to see a lot more people using stream-friendly program‐

Streaming All the Way to the User Interface | 169

17 Slava Akhmechet: “Advancing the realtime web,” rethinkdb.com, 27 January 2015.

18 “Meteor,” Meteor Development Group, meteor.com.

19 “Firebase,” Google Inc., firebase.com.

ming models. We came across some of these in Chapter 1
(Figure 1-31): frameworks based on actors and channels, or reactive
frameworks (ReactiveX, functional reactive programming), are a
natural fit for applications that make heavy use of event streams.

I’m glad to see that some people are already working on better end-
to-end support for event streams. For example, RethinkDB supports
queries that notify the client if query results change.17 Meteor18 and
Firebase19 are frameworks that integrate the database backend and
user interface layers so as to be able to push changes into the user
interface. These are excellent efforts. We need many more like them
(Figure 5-27).

Figure 5-27. Event streams are a splendid idea. We should put them
everywhere.

Conclusion
Application development is fairly easy if a single monolithic data‐
base can satisfy all of your requirements for data storage, access, and

170 | Chapter 5: Turning the Database Inside Out

http://rethinkdb.com/blog/realtime-web/
https://www.meteor.com/
https://www.firebase.com/

processing. As soon as that is no longer the case—perhaps due to
scale, or complexity of data access patterns, or other reasons—there
is a lack of guidance and patterns to help application developers
build reliable, scalable and maintainable applications.

In this report, we explored a particular architectural style for build‐
ing large-scale applications, based on streams of immutable events
(event logs). Stream processing is already widely used for analytics
and monitoring purposes (e.g., finding certain patterns of events for
fraud detection purposes, or alerting about anomalies in time series
data), but in this report we saw that stream processing is also good
for situations that are traditionally considered to be in the realm of
OLTP databases: maintaining indexes and materialized views.

In this world view, the event log is regarded as the system of record
(source of truth), and other datastores are derived from it through
stream transformations (mapping, joining, and aggregating events).
Incoming data is written to the log, and read requests are served
from a datastore containing some projection of the data.

The following are some of the most important observations we
made about log-centric systems:

• An event log such as Apache Kafka scales very well. Because it is
such a simple data structure, it can easily be partitioned and
replicated across multiple machines, and is comparatively easy
to make reliable. It can achieve very high throughput on disks
because its I/O is mostly sequential.

• If all your data is available in the form of a log, it becomes much
easier to integrate and synchronize data across different systems.
You can easily avoid race conditions and recover from failures if
all consumers see events in the same order. You can rewind the
stream and re-process events to build new indexes and recover
from corruption.

• Materialized views, maintained through stream processors, are a
good alternative to read-through caches. A view is fully precom‐
puted (avoiding the cold-start problem, and allowing new views
to be created easily) and kept up to date through streams of
change events (avoiding race conditions and partial failures).

• Writing data as an event log produces better-quality data than if
you update a database directly. For example, if someone adds an
item to their shopping cart and then removes it again, your ana‐

Conclusion | 171

lytics, audit, and recommendation systems might want to know.
This is the motivation behind event sourcing.

• Traditional database systems are based on the fallacy that data
must be written in the same form as it is read. As we saw in
Chapter 1, an application’s inputs often look very different from
its outputs. Materialized views allow us to write input data as
simple, self-contained, immutable events, and then transform it
into several different (denormalized or aggregated) representa‐
tions for reading.

• Asynchronous stream processors usually don’t have transac‐
tions in the traditional sense, but you can still guarantee integ‐
rity constraints (e.g., unique username, positive account
balance) by using the ordering of the event log (Figure 2-31).

• Change data capture is a good way of bringing existing databases
into a log-centric architecture. In order to be fully useful, it
must capture both a consistent snapshot of the entire database,
and also the ongoing stream of writes in transaction commit
order.

• To support applications that dynamically update their user
interface when underlying data changes, programming models
need to move away from a request/response assumption and
become friendlier to streaming dataflow.

We are still figuring out how to build large-scale applications well—
what techniques we can use to make our systems scalable, reliable,
and maintainable. However, to me, this approach of immutable
events, stream processing, and materialized views seems like a very
promising route forward. I am optimistic that this kind of applica‐
tion architecture will help us to build better software faster.

Fortunately, this is not science fiction—it’s happening now. People
are working on various parts of the problem and finding good solu‐
tions. The tools at our disposal are rapidly becoming better. It’s an
exciting time to be building software.

172 | Chapter 5: Turning the Database Inside Out

About the Author

Martin Kleppmann is a researcher and engineer in the area of dis‐
tributed systems, databases and security at the University of Cam‐
bridge, UK. He previously co-founded two startups, including
Rapportive, which was acquired by LinkedIn in 2012. Through
working on large-scale production data infrastructure, experimental
research systems, and various open source projects, he learned a few
things the hard way.

Martin enjoys figuring out complex problems and breaking them
down, making them clear and accessible. He does this in his confer‐
ence talks, on his blog and in his book Designing Data-Intensive
Applications (O’Reilly). You can find him as @martinkl on Twitter.

http://martin.kleppmann.com

	Copyright
	Table of Contents
	Foreword
	Preface
	Chapter 1. Events and Stream Processing
	Implementing Google Analytics: A Case Study
	Aggregated Summaries

	Event Sourcing: From the DDD Community
	Bringing Together Event Sourcing and Stream Processing
	Twitter
	Facebook
	Immutable Facts and the Source of Truth
	Wikipedia
	LinkedIn

	Using Append-Only Streams of Immutable Events
	Tools: Putting Ideas into Practice
	CEP, Actors, Reactive, and More

	Chapter 2. Using Logs to Build a Solid Data Infrastructure
	Case Study: Web Application Developers Driven to Insanity
	Dual Writes

	Making Sure Data Ends Up in the Right Places
	The Ubiquitous Log
	How Logs Are Used in Practice
	1) Database Storage Engines
	2) Database Replication
	3) Distributed Consensus
	4) Kafka

	Solving the Data Integration Problem
	Transactions and Integrity Constraints
	Conclusion: Use Logs to Make Your Infrastructure Solid
	Further Reading

	Chapter 3. Integrating Databases and Kafka with Change Data Capture
	Introducing Change Data Capture
	Database = Log of Changes
	Implementing the Snapshot and the Change Stream
	Bottled Water: Change Data Capture with PostgreSQL and Kafka
	Why Kafka?
	Why Avro?

	The Logical Decoding Output Plug-In
	The Client Daemon
	Concurrency

	Status of Bottled Water

	Chapter 4. The Unix Philosophy of Distributed Data
	Simple Log Analysis with Unix Tools
	Pipes and Composability
	Unix Architecture versus Database Architecture
	Composability Requires a Uniform Interface
	Bringing the Unix Philosophy to the Twenty-First Century

	Chapter 5. Turning the Database Inside Out
	How Databases Are Used
	1. Replication
	2. Secondary Indexes
	3. Caching
	4. Materialized Views
	Summary: Four Database-Related Ideas

	Materialized Views: Self-Updating Caches
	Example: Implementing Twitter
	The Unbundled Database

	Streaming All the Way to the User Interface
	Conclusion

	About the Author

