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Introduction

pache Kafka is a highly flexible streaming platform that

supports multiple, key use cases in modern data architec-

tures. One critical use for Kafka, and the focus of this book,
is building scalable, real-time data pipelines. Streams of unbounded
data are effectively ingested, persisted, and delivered using Kafka as
a framework. High-volume, high-velocity data from social media
feeds, Internet of Things (IoT) sources, and any database transac-
tions are written, replicated, and read in real-time. Change data
capture (CDC) database replication technologies leverage Kafka to
enable a highly effective platform supporting real-time transac-
tional database streams.

About This Book

Real-time database transactions are a growing and preferred use
case for Kafka. Traditional batch methods struggle to meet the
demands of modern data pipelines. Replicating high volumes of
data from large enterprise databases requires CDC and a high-
performance data processing pipeline. Apache Kafka Transaction
Data Streaming For Dummies, Confluent & Attunity Special Edition,
explores how Kafka supports critical database transaction use
cases and how to effectively implement these in real-time trans-
action streaming solutions.

Icons Used in This Book

©

REMEMBER

©

TIP

(= =
T
TECHNICAL
STUFF

Remember icons mark the information that’s especially impor-
tant to know.

The Tip icon points out helpful suggestions and useful nuggets of
information.

The Technical Stuff icon indicates some additional technical
details that may be interesting.

Introduction 1



Beyond the Book

This book can help you discover more about implementing Kafka
transaction streaming, but if you want resources beyond what
this book offers, we have some insight for you:

¥ www.attunity.com/products/replicate: Attunity
Replicate, an enterprise grade CDC platform supporting
transaction streaming use cases for Kafka

¥ https://cnfl.io/express—scripts: An on-demand
webinar with joint customer, Express Scripts

¥» www.attunity.com/resources/whitepapers:
Comprehensive CDC whitepapers offered by Attunity

¥ https://discover.attunity.com/streaming-change-
data-capture-en-ebook-1p9336.html: An ebook on
streaming CDC

¥ www.confluent.io/product/confluent-platform:
Confluent’s streaming platform based on Kafka

¥ www.confluent.io/confluent—cloud: Kafka for the cloud

¥ https://kafka-tutorials.confluent.io: A collection of
event streaming use cases, with each tutorial featuring an
example scenario and several complete code solutions

¥ https://docs.confluent.io/current/tutorials/
index.html: Detailed demos of Confluent and Kafka

» http://kafka.apache.org: Especially for developers,
documentation that offers deeper dives into implementation
and code details

2 Apache Kafka Transaction Data Streaming For Dummies, Special Edition



IN THIS CHAPTER

» Defining a data stream

» Seeing how transactional data becomes
part of a data stream

» Creating opportunities with transaction
data streaming

Chapter 1
Understanding
Transaction Streaming
with Apache Kafka

odern data requirements are real time. This is the case

with processing online transactions or social media

feeds, capturing Internet of Things (I0T) data, or gener-
ating “just-in-time” or instant analytics on any type of database
transaction. Rapid, incremental, and high-volume changes in
data require ultra-fast replication or processing. Traditional batch
processes operate on a schedule using a fixed time window to
process database transactions, often slowing or pausing produc-
tion operations during off-hours given the high impact of its full-
load replication on source databases. Batch processes struggle to
support real-time and continuous changes in databases.

Changes in data are commonly generated from source datasets
by using change data capture (CDC) processes. CDC focuses on
capturing most the most current or real-time changes in data and
metadata (for example, data about the datasets). These incremen-
tal changes (as transactions) are collected from the source using
common CDC methods like log-based capture. These transactions

CHAPTER 1 Understanding Transaction Streaming with Apache Kafka 3



then create a stream. The stream of changes is then collected,
persisted, and delivered using a streaming platform like Kafka.

Transaction streaming is the collection of database changes derived
through CDC that are delivered to a streaming platform like
Kafka. The key benefits of transaction streaming are

¥ Support for real-time processing and analytics via continu-
ous replication of critical, high-volume database changes

¥ Reduction of impact on production workloads via non-
intrusive CDC methods

¥ Low-latency, automated delivery, and persistence of
transactions to multiple targets via Kafka

In this chapter, we give you the low-down on the components of
transaction streaming.

What is a Data Stream?

A data stream consists of data with three common characteristics.
A data stream may include one or more of these characteristics:

3 Unbounded: No specific beginning or end of the dataset
clearly defined

3 Arriving sporadically: Thousands of records in sub-
milliseconds, or very few records over hours, days, or
even longer time periods

¥ Varying sizes: Records varying in size from KBs to GBs

Streaming data is a bit different than traditional batch data.
Figure 1-1 shows you an illustration of the streaming data process
compared with traditional batch data.

The sources for batch and streaming data are often the same,
although newer sources like IoT or other real-time feeds are usu-
ally associated with streaming data. Even non-real-time data can
be a stream, like CDC database transactions. The key differen-
tiator between batch and streaming is that the stream data isn’t
bounded or captured in a specific unit or group to be processed.

4 Apache Kafka Transaction Data Streaming For Dummies, Special Edition



Targets

Sources
Batch Data Processing

Databases

Data . Data Data
M¥iilahiiise Time 1 Time 2
Batch Units

Streaming Data
o

Unbounded Set

loT, Real-
Time Feeds

ghi

Mainframe

Extraction & Ingestion

FIGURE 1-1: Comparing streaming data and traditional batch data processes.

Because this data is expected to require processing as a stream, a
streaming solution must support real-time ingestion, unbounded
(uncategorized/ungrouped) data, and variable sizes and veloci-
ties. A primary challenge is ingesting and processing these data
streams in real time, efficiently, and at scale. Table 1-1 gives you
the modern data characteristics and requirements for processing
streaming data.

TAaBLE1-1  Modern Data Characteristics

Characteristic Description/Use Cases

Real-time ingestion loT, sensor, video data

Social media feeds

(Near) real-time event Online shopping

response i ) )
Real-time analytics processing

Geolocation analysis

Asynchronous data Immediately available data, consumed when needed
transfer
Data distribution Many users, consumers from single streaming or

aggregated stream sources

Parallel processing and efficient scaling

Service modularity Microservices or de-coupled users as consumers
Data extraction and Transactional data
replication

CDC

CHAPTER 1 Understanding Transaction Streaming with Apache Kafka 5
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REMEMBER

Real time and near real time differ and depend on use cases. For
some requirements, a 15-minute delay is real time; for others it
needs to be sub-second.

Apache Kafka enables the capture and process of CDC transactions
by ingesting data at any required velocity.

Defining Transaction Data
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Transaction data consists of changes to database data/operations
or metadata (commonly the schema). Read operations are gener-
ally not transaction data because no data or metadata is changed.

Metadata commonly refers to a database schema, but it may also
include information about infrastructure, users, data instances,
and related information. For more details on metadata, visit
https://discover.attunity.com/streaming-change-data-
capture-en-ebook-1p9336.html.

Common transactions include

3 Inserts: Adding one or more rows to a database. A new row,
commonly called a record, may summarize the time, date,
amount, and name for a recent transaction.

Kafka also refers to records as the base unit of the data log
structure in Kafka. Even though they're mostly the same
thing, in transaction streaming, they're different.

¥ Updates: Changing fields in one or more existing rows. An
address or other data may change in an existing record.

3 Deletes: Removing one or more rows. If an incorrect transac-
tion is entered, it's erased. (Inserts, updates, and deletes are
performed using Data Manipulation Language [DML].)

» Data Definition Language (DDL) operations: Removing
tables or columns, or altering data types. DDLs are used to
change a database’s structure.

Traditional Relational Database Management Systems (RDBMS)
are frequently sources for transaction data. Alternative or
multi-model databases+, such as NoSQL, also generate similar
transaction data. Databases may be on-premises, cloud-hosted,
or in a hybrid combination of both. Table 1-2 details the different
database types and roles.

6 Apache Kafka Transaction Data Streaming For Dummies, Special Edition



1ABLE1-2 Database Types and Functions
Database Type Examples Roles/Use Cases
RDBMS Oracle Data warehouse for business
. reporting
(SQL Based) Microsoft SQL Server
Operational databases
DB2
MySQL
PostgreSQL
Hadoop Ecosystem Hortonworks Data lakes
Cloudera Unstructured data
NoSQL MongoDB Data warehouse
(Graph, Column, Marklogic Analytics
Document, Key-Value, . ) ) )
and so on) DynamoDB Social media relationships
Neo4j Specialized or custom use cases

where data structures map
more closely than relational

O

REMEMBER

In most cases, database systems support some type of trigger,
query, or log-based CDC to allow capture of transaction data oper-
ations. The most advanced CDC solutions minimize the impact
on source production systems by using a log-based approach
that reads backup or recovery logs. Regardless of the CDC cap-
ture method, the database changes must be replicated to targets
or other consumers. Kafka provides a highly scalable, real-time
method of receiving changes from CDC and distributing them in
carefully sorted streams to a variety of targets.

Defining Transaction Data Streaming

After transaction data is captured via CDC, there must be a method
to ingest, store, and deliver the transaction data streams. Com-
mon methods for CDC delivery include direct connections from
the CDC platform to targets (also called sinks), which extract data
from Kafka. For example, a relational database may rely on CDC
mechanisms to capture changes (transactions) and push these
into another database, data warehouse, or archival system. This

CHAPTER 1 Understanding Transaction Streaming with Apache Kafka 7



method is tried and tested, highly effective, and low impact to
capture and replicate data changes into target systems. But what
if you need to persist the stream of transactions? Or if the stream
needs to be consumed by multiple targets? Perhaps some con-
sumers require near real time, while others retrieve infrequently
using intermittent jobs.

A single data transaction stream could be used simultaneously
by a data warehouse for analytics, a shared microservices-based
application, and an advanced data lake platform for machine
rememeer | learning. Transaction data streaming is the unbounded flow of
transactions from multiple sources to one or more targets.

Infrastructures grow and quickly require more complex archi-
tectures to support these multiple consumption scenarios. The
best method to address this common problem is with a new type
of architecture that scales horizontally, supports real time, and
is running in production at thousands of companies: an event
streaming platform.

Kafka is a proven and well-used enterprise streaming data plat-
form that effectively scales transaction data streams.

REMEMBER  The final component of transaction data streaming is where the
data stream is delivered — into Kafka. Kafka then replicates and
scales the optimized delivery of these streaming transactions.
Kafka supports publishing and persistence scenarios as described
in Table 1-3.

TAaBLE13 Kafka Use Cases

Kafka Use Cases Description

Real-time event Transactions written to cluster are available to be read

processing with millisecond latency.

Streaming ingestion Cluster can scale to support high volume ingestion of
records.

Machine learning Stream processing (see Chapter 5 for more info) enables

analytics using Al/ML operations.

Microservices Decoupling of producers and consumers enables

enablement microservices implementations. Kafka supports both
events (triggers or signals from one process to another)
and data (movement of data between processes).

8 Apache Kafka Transaction Data Streaming For Dummies, Special Edition



Kafka Use Cases Description

Record or event Kafka performs like a traditional message queue, allowing

broker

ingestion and delivery of records or events.

Data persistence By default, Kafka persists data records for seven days. This

timeframe is configurable down to minutes or up to
forever, based on demands and use cases.

CDC combined with Kafka enables a complete ecosystem for build-
ing a transaction data streaming platform. Chapters 2, 3, and 4
dive much deeper into how this rich solution is fully implemented.

Opportunities Created with Transaction
Data Streaming

REMEMBER

Transaction data streaming enables flexibility in modern data
pipelines. In addition to traditional batch data operations — still
having relevant use cases — transaction streaming supports real-
time processing and new use cases like advanced analytics.

Business processes and decision-making functions can be enabled
in near real time, without having to wait on batch loads or sched-
uled processes. CDC functions can be configured to automatically
identify and capture source database changes and then write them
to Kafka in near real time. The Kafka streaming platform delivers
and persists these transactions for immediate processing, archi-
val use cases, or delivery to a data lake, or even consumption by
other microservices.

CHAPTER 1 Understanding Transaction Streaming with Apache Kafka o



IN THIS CHAPTER

» Studying the Kafka architecture

» Aligning Kafka with transactional data

Chapter 2

Looking Deeper into
Apache Kafka

O

REMEMBER

pache Kafka is a streaming platform. What exactly does

that mean? Essentially, a streaming platform ingests, per-

sists, and presents streams of data for consumption. The
stream can be any type of data — any source that can be serialized
into a record. In this chapter, we dig a little deeper into the anat-
omy of Kafka, so you can better understand its moving parts and
why Kafka is such a powerful streaming platform.

With a deeper view of Kafka, you see that topics resemble data-
base transaction logs. Transaction data, captured for example via
change data capture (CDC), is essentially a log of records that’s
persisted and made consumable at scale. These records can be
consumed for multiple use cases (databases, microservices,
immediate stream analytics, and so on), and because they’re
stored for longer periods, they can be replayed or consumed at
slower velocities, and in order. Kafka offers a solution for trans-
action data through its log-based architecture. For even more
information on Kafka, visit https://kafka.apache.org.

CHAPTER 2 Looking Deeper into Apache Kafka 11



Looking at the Kafka Architecture

Processing data with Kafka relies on three basic components: pro-
ducers, brokers, and consumers. Figure 2-1 shows a basic Kafka
architecture.

| ||
- t

De-
serializer

» Broker | Broker »

Zookeeper

FIGURE 2-1: The basic Kafka architecture.

We cover this structure and its components in this section.

Kafka producers

The producer is a piece of code or process that writes data to Kafka.
Producers use a serializer and an optional key to create a record
containing the source data. The record is then written to Kafka.
The producer’s components are detailed as follows:

¥ Data: Data is written to Kafka. This can be any type of data
that's serialized. Commonly used sources include events
such as database transaction logs.

3 Record: A unit of data in Kafka is a record. Streams of data in
Kafka consist of collections of records. One or more interre-
lated records constitutes a database transaction.

¥ Serializer: Serializers are used by the producer to convert
data into a record. Any serializer can be used, provided the
same type of de-serializer is used by the consumer.

12 Apache Kafka Transaction Data Streaming For Dummies, Special Edition



¥ De-serializer: This is used by the consumer to convert
records back into the original data.

¥ Key: Akey is an optional identifier used to hash (select)
which partition will receive a record. This function is used to
target records to specific partitions.

Kafka cluster

A Kafka cluster is a collection of brokers. Brokers are the basic
functional unit in Kafka. A broker runs the Kafka process and
responds to requests from producers and consumers. Brokers rely
on, manage, and/or interact with the following components:

¥ Topic: The organizational unit for records is called a topic.
Kafka records are written to specific topics. Topics are
generally named for the kind of data they contain. Each topic
is an immutable, append-only log consisting of a collection of
records. Each topic is a logical (and sequential) grouping of a
log of records. See Chapter 4 for more information on topics.

3 Partition: Topics are composed of storage units called
partitions. Topics are divided into multiple partitions for
scalability. This allows parallel writes and reads and helps
enable backup copies of each topic. Partitions are replicated
between brokers, providing redundant copies of data in the
event of a broker failure. See Chapter 4 for more information
on partitions.

3 Apache Zookeeper: A component that helps Kafka clusters
manage distributed consensus is called Apache Zookeeper.
Zookeeper keeps track of cluster metadata and helps in the
process of electing lead partition replicas.

Kafka consumers

The consumer is an application program that reads records from
a topic. Topics can be read by a single consumer, or if the topic is
partitioned, a group of consumers can read from its partitions in
parallel. This enables faster throughput and lower latency, which
allow scaling of reads — an important concept we talk about more
with streaming transactions in Chapter 4.

CHAPTER 2 Looking Deeper into Apache Kafka 13



An offset is a marked position that Kafka consumers use to keep
track of the most recent message they’ve consumed from each
partition. This enables consumers to pause read operations and
then pick up where they left off and resume in sequence.

Relating Transaction Data and Kafka

REMEMBER

What makes Kafka’s architecture so useful for CDC transaction
data? We’re glad you asked. In this section, you take a look at the
life cycle of transactional data and how it aligns with a Kafka data
pipeline.

Here is one example of the life cycle of a transaction:

. Database transaction events are captured by low-impact
CDC.

The transaction event is converted by the producer to
Kafka record.

The record is written to the topic (log of records).

The record is persisted for as long as retention is set in
Kafka (minutes to days, or indefinitely).

The record is stored redundantly (via replicated
partitions).

. Multiple consumers read the record over different time
periods.

N O U1 AWON =

. Consumer groups can read records in parallel from
multiple partitions to enable highly scalable reads
throughput (although transactional consistency must
still be maintained).

Kafka can scale with multiple topics and partitions to support
ingestion and delivery of high-volume CDC transactional data
from a variety of sources simultaneously and using the same clus-
ter. Using partition keys, Kafka can also maintain strict ordering
of transactions.

14 Apache Kafka Transaction Data Streaming For Dummies, Special Edition



ORDER, SEMANTICS, AND
CONSISTENCY — OH MY!

Kafka captures database events as transactions by using a producer
to create a record containing the details of the event. Each record is
written to a Kafka topic. Because records of the same key always land
in the same topic, transactions related to the same key are kept
strictly in order. Database transactions often require transactional
consistency — defined here as being holistic, ordered, and committed
only one time (exactly once semantics). You can find more about
“exactly once” semantics and options with Kafka Streams at www .
confluent.io/blog/enabling-exactly-once-kafka-streams.
We also want to make the distinction between database transaction
consistency and exactly once semantics: They overlap, and you need
both, but they're different things. We cover this more in Chapter 5.

Events (records in Kafka) can also be grouped by topic into one parti-
tion, guaranteeing the correct order. Other methods include sharing
transactional metadata by using headers that are attached to Kafka
records. You can read more about this in Chapter 6.

Figure 2-2 shows the anatomy of how Kafka uses topics, parti-
tions, and records.

s [
Toic [y [ [ [

*
£ = = =0

FIGURE 2-2: Kafka topics, partitions, and records.
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IN THIS CHAPTER

» Integrating data with Apache Kafka
Connect API

» Using change data capture (CDC) to
integrate data

» Looking at architectural patterns for
integrating data

Chapter 3

Ingesting Data with
Apache Kafka

raditional data integration pipelines focus on Extract,

Transform, and Load (ETL) or, as is now common with big

data architectures, Extract, Load, and Transform (ELT) pro-
cessing. Data is extracted using a process like change data capture
(CDC) and/or by writing data to another database or target. Data
is then either transformed before it is loaded (for example, ETL)
or loaded into an analytical or target system and then transformed
(ELT). The emergence of data lakes and other big data architec-
tures has blurred the line between ETL and ELT, and both pat-
terns are now commonly used.

Apache Kafka is used to ingest and transport data in an ETL/ELT
pipeline. Data is read and written by various databases and other
end points using Kafka producers and consumers. Low latency,
high availability, scalability, and persistence enable Kafka to serve
as a highly efficient pipeline to move data for real-time integra-
tion requirements. Kafka also supports in-stream data integra-
tion with options like the Kafka Streams API, which we cover in
Chapter 5.

CHAPTER 3 Ingesting Data with Apache Kafka 17



Kafka supports common data integration methods, and we cover
two of them here: Kafka Connect and CDC. We also cover common
data integration architectural patterns in the last section of this
chapter.

Kafka Connect

18

Kafka Connect is an open-source component of Kafka that sup-
ports connections to common databases. Connect creates a com-
mon framework to develop, deploy, and manage connectors to
Kafka. Common scenarios implemented with Connect include
database ingestion, collecting metrics from application servers,
or database extraction processes. Each of these workflows can
be processed incrementally, in near real time, or in batches. For
more info on Kafka Connect, visit https://docs.confluent.io/
current/connect/index.html or https://kafka.apache.org/
documentation/#connect.

Connectors support simplified, declarative methods to pull or
push data with Kafka. Figure 3-1 shows a typical Kafka Connect
configuration.

Kafka Kafka Kafka
Connect Cluster Connect

= : —
So Worker Broker Worker

» = gl e lhag Treets
Worker ' Braker Worker
Node Node

FIGURE 3-1: A typical example of a Kafka Connect configuration.

Kafka Connect is deployed as a separate interface between data
sources and targets and the Kafka cluster. Connect uses a distrib-
uted cluster, leveraging multiple worker nodes to provide hori-
zontal scaling and fault-tolerance.

A challenge of using Kafka Connect is creating the required con-
nectors to external sources and targets. Connectors are reus-
able but may need development efforts to build initially. Most
organizations leverage a third-party vendor, such as Confluent
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(see Chapter 7 for more info), to provide prebuilt connectors for
common databases and other data sources. Using a managed ser-
vice for Kafka Connect also helps provide a fully scalable Kafka
Connect infrastructure.

Using Kafka Connect for data integration leverages connec-
tors that easily move data into and out of Kafka. The actual data
integration functions (called transformations) are still completed
by external functions, unless in-stream processing is used.
Chapter 5 discusses in-stream processing in detail.

Kafka Connect provides a scalable, reusable, common interface to
most data sources and targets. These features facilitate building
high-performance data integration pipelines.

Change Data Capture (CDC)

CDC is a method for tracking, capturing, and delivering changes
from source datasets. Implemented well, CDC enables data inte-
gration by replicating database or data source changes with little
or no impact on those sources.

Modern CDC systems use three common data capture methods:

3 Triggers: A source insert, update, or delete in a database
“triggers” writing a change to a separate table (commonly
called a shadow or change-capture table). This table is a
separate record of changes used by CDC to capture all data
source changes. The change-capture table is then replicated
to data targets or into a streaming platform like Kafka.

3 Query-based: A CDC engine “queries” the source database,
looking at timestamps, version numbers, or status columns,
and copies new data to targets or into the transaction
streaming platform.

¥ Log-based: CDC scans backup or recovery transaction logs
and identifies changes to be replicated to targets or into the
transaction stream.
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TABLE 3-1

Table 3-1 describes the impact and requirements for CDC capture
methods, which sometimes depend on data source requirements.

CDC Capture Method Requirements
and Impacts

CDC Capture

Method

Triggers

Requirements Impact

Sometimes used when CDC process has no Medium
access to transaction logs. Database triggers

required to write separate tables can impact

performance.

Query-based Often used if the source does not have change Low

logs, as is generally the case with data
warehouses. This method has similar use cases
as triggers, but with less impact. The CDC engine
queries the database at regular intervals,
although the time between intervals can
significantly increase latency.

Log-based

The CDC engine scans transaction logs to identify ~ Minimal
and capture real-time updates with minimal or

no impact on source production workloads.

This is the preferred CDC method because it's

efficient and provides minimal impact.

Common Data Integration
Architectural Patterns

CDC combined with Apache Kafka is becoming a primary stream-
ing pipeline to support multiple architectural patterns for data
integration. Kafka’s topic mechanism is appealing for large
enterprise environments that need to create and manage granular
data streams between many sources and targets. Table 3-2 sum-
marizes the most common patterns for data integration in mod-
ern data platforms.
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1aBLe32 Data Integration Architectural Patterns

Pattern Description

Data lake integration This entails data ingestion into a data lake or other
analytics platform. Many sources may feed into a data
lake and require CDC + Kafka to effectively ingest and
transform data.

Microservices Data integration is more commonly performed using
de-coupled microservices to process events and data
separately. CDC + Kafka act as the extraction, persistence,
and transit layer between different microservices.

NoSQL Traditional relational databases leverage structured data
and common SQL queries to extract and integrate data.
Multi-model databases now support semi-structured
data like document or graph databases. Kafka enables
connections and data integration between multi-model

databases.
Streaming-first An emerging integration pattern is the concept of
architecture streaming first, whereby data is ingested directly into

a streaming platform using CDC and Kafka. Kafka then
persists this data until it can be consumed by more
traditional data warehouses or analytics platforms. The
heart of this concept is to put the data in the stream first,
instead of loading into a traditional datastore or data
warehouse.
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IN THIS CHAPTER

» Using CDC and Kafka to deliver real-time
results

» Configuring topics and partitions

Chapter 4
Applying CDC
to Apache Kafka

he complete change data capture (CDC) process consists of

two functions: capturing the changed data and enabling

replication of the changed data. Both functions grouped
together are commonly referred to as CDC or replication (although
data replication is technically speaking a distinct process from
CDC). Understanding this two-step process is important as you
look at CDC and Apache Kafka in this chapter. CDC captures and
presents data changes to Kafka. Kafka becomes the persistence
and transit layer in which CDC changes are replicated and
delivered.

Delivering in Real Time: CDC and Kafka

Any CDC method can be used to create a stream of records. These
records can be written to a streaming platform like Kafka, where
they’re persisted and consumed by multiple targets. The CDC
replication process is shared between the CDC system and Kafka
producers. The captured data from the CDC process must be seri-
alized and written to a Kafka topic. CDC systems, such as Attunity
(see Chapter 7 for more info), fully automate the configuration of
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databases as producers to Kafka, eliminating the need for script-
ing and greatly simplifying management.

CDC source metadata, such as Data Definition Language (DDL)
schemas, is critical to a fully optimized transaction streaming
pipeline. Kafka doesn’t see any internal data; it’s just moving

rememeer  DVtes, so optimizing data definitions and serialization are key
concerns for an effective transaction pipeline.

Topic schemas and partition usage (see the next section “Topics
and Partitions” for more info) should be aligned with throughput
and latency requirements (more on this in Chapter 6). Producers
can use optimized schema serializers, such as Apache Avro, to
ensure consistency in data stream pipelines. Many organizations
leverage dedicated schema registries such as Confluent’s Schema
Registry. These registries allow for version control and updates of
topic schemas while enforcing record consistency.

For more information on Apache Avro in context with Connect,
visit https://kafka.apache.org/documentation/#connectapi.
Head to Chapter 7 to discover more on Confluent’s Schema
Registry.

Figure 4-1 shows a more detailed CDC and Kafka architecture.

CDC Capture CDC Replication
Process Process

RN
Producer ‘ Brakai
based _ Topic
o
based Transactional

Data Stream

FIGURE 4-1: The CDC and Kafka architecture.

Using CDC to publish database changes as a record stream to Kafka
is increasingly considered a best practice. Data engineers can use
a familiar product or process because CDC is widely adopted as
the preferred method to efficiently replicate database records to
analytics and microservices platforms. CDC also reduces script-
ing work for Kafka developers, especially when a fully automated
solution is used.
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Getting Organized: Topics and Partitions

Two key goals of a streaming platform are to optimize data
throughput and ensure consistency. CDC inserts, updates, deletes,
and DDL changes are most commonly captured from database
sources. Kafka’s architecture leverages topics to provide structure,
partitions for scalability (high throughput), and replication for
redundancy. Transaction streaming use cases are often a tradeoff
between high throughput, guaranteed ordering, and low latency.

Global message order is guaranteed when all transactions go to
a single partition. Scaling a topic over multiple partitions allows
parallel reads and writes that can improve performance at the
expense of global ordering of messages. The solution is to choose
a key that provides the key-specific ordering required. Addition-
ally, the size of each Kafka record affects the time required for
data ingestion and consumption, as well as overall throughput of
transactions.

Table 4-1 compares two Kafka topic configuration options for
transactional data. Tables are based on CDC from a relational
database.

1ABLE41  Kafka Topic Configuration Options
Option Benefits Considerations
One topic per Easy to understand Thousands of tables and topics
database table categories and locate can be complex to manage
topics ) )
Best used with auto-topic
Can isolate and reload creation for easier provisioning
one table to check data ) ) )
consistency Tran;formatlon re.qu|_red for topic
labeling and tracking if databases
share schemas or table names
One topic per Simplifies provisioning of ~ Must partition carefully for
application many tables for database = consumers to understand
(focused on application records’ schema and table
consuming . .
application) Easily categorizes DB

applications

Table 4-2 compares four common partition configuration options
for transaction streaming.
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1ABLE42 Kafka Partition Configuration Options

Option Benefits Considerations
Random Spreading data across For correct record order, need
partitioning partitions improves complex logic to consume all
parallelism and partitions, then sort by key
performance ) )
Complex logic required for
Ideal for initial loads or transaction consistency
insert-only updates
Randomly assigns partition to
each record
Partition by Maintains correct record Transformation logic might be

schema/table

order for each table as all
records go to the same
partition

Multiple ordered tables
can be written to one topic

required to ensure one table per
partition

Complex logic also required for
transaction consistency between
tables

Often used for multiple tables
per topic

Partition by table

Records with same

Additional metadata required to

primary key primary key are ordered map records to tables, if multiple
correctly in same partition  tables per topic
Uses most/all partitions Often used for one topic per
table scenarios
Partition by Ensures transaction Must map all tables associated

transaction ID

consistency

Consumer can easily read
transactions sequentially
from one partition

with transaction to same topic
for accurate consumption

Separating topics by transaction use cases enables a single Kafka
cluster to support many CDC and integration pipelines. Tables 4-1
and 4-2 show the potential complexities in determining the best
configurations for aligning database tables with Kafka topics and
partitions.

Optimizing Kafka to support transactional data streaming often

@ has tradeoffs between high throughput, guaranteed ordering, and
low latency. Focus topic and partition considerations on each use

TIP case to ensure an ideal match between transactional requirements
and the flexibility of Kafka.
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IN THIS CHAPTER

» Defining the core components that
support stream processing

» Reaping the benefits of stream
processing

Chapter 5
Understanding Stream
Processing with Apache
Kafka and Its Benefits

tream processing is a method of performing transforma-

tions or generating analytics on transactional data inside a

stream. Traditional Extract, Transform, Load (ETL)-based
data integration functions are performed on data that will be ana-
lyzed in a database, data lake, or data warehouse. Analytics are
typically run against a data warehouse with structured and
cleansed data. In contrast, streaming platforms like Apache Kafka
enable both integration and in-stream analytics against data as it
moves through the stream.

Transactional data also benefits from stream processing because
it allows both transformation/cleansing functions and rerouting
or aggregation of multiple data sources in-stream. Change data
capture (CDC) is an optimal mechanism for capturing and deliv-
ering transactional data from sources into a streaming platform.
Stream processing can then take this CDC generated data and
create new streams for additional use cases, or it can generate
analysis against the stream of transactions.
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In this chapter, you discover the components that support stream
processing and learn why stream processing is beneficial.

Stream Processing in Kafka

)
TECHNICAL
STUFF

Kafka includes three core components that support stream pro-
cessing: The Apache Kafka Streams API, KSQL, and windowing.

The Kafka Streams API

The Streams API is a client library that supports building applica-
tions or microservices. Source data is read from Kafka and writ-
ten back to Kafka. The Streams API lives outside an actual Kafka
broker or cluster. You can see a typical Kafka Stream API structure
in Figure 5-1.

cbc Producer

Capture Process
Process

Writes to
Kafka

Consumers
Read from

New Topic

3 New .

I Topic |

Streams
API

FIGURE 5-1: The structure of a typical Kafka Streams API.

Cases

The basic concept of stream processing is defined by the rela-
tionship of tables and streams. A relational database uses tables,
which may be a familiar concept to you. A simple table is a collec-
tion of key-value pairs. A Kafka topic is also a collection of key-
value pairs — as a changelog. The idea is that database values are
converted to a changelog and then reconstructed or used to create
new values by operations done in stream processing. This is also a
basic example of how CDC replicates source data to a target.

Key-value pairs are two linked data items, usually expressed as a
table: planet:earth, sky:blue, water:H20.
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In Figure 5-2, we show you a simple example of the relationship
between tables and streams.

Key-Value Table As a Stream As a Reconstructed KTable
(Changelog)

m m (“key 1", “value 1") m m
[ tev2 | vaiez [L OO W ke 2 | value2
EEE 5 | Kev3 | values |

(“key 3", “value 3")

FIGURE 5-2: The stream-table duality.

Stream processing in Kafka uses abstracted concepts of the

060 stream (‘Changelog) called KStreqms. A KStream is a lightweight

abstraction on top of a Kafka topic, with each event in a KStream

TecunicaL  representing a record in the topic. A KTable is a Kafka Streams

STUFF API abstraction that turns that changelog back into an efficiently
accessible, durable, replicated, in-memory key-value store.

KSQL

KSQL is a SQL-like language for describing stream process-

ing operations on data in Kafka. It uses similar stream and table

abstractions as the KStream and KTable classes found in the Kafka
rememper  Streams API (see the preceding section).

For more information on KTable and KStream and their differ-
ences, visit docs.confluent.io/current/streams/faq.html.

TIP

Looking into the stream: Windowing

The last core component of stream processing is windowing.
Windowing uses time-based constraints to determine what subset
of records is being viewed. Because streaming data is unbounded,
when working with streams, you must define the time window
you’re referencing to group records for processing.

Commonly used time-based window options are described in
Table 5-1.
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1aBLes1 - Windowing Options in Kafka

Tumbling (time-based) Fixed-size, non-overlapping, gap-less

Hopping (time-based) Fixed size, overlapping

Sliding (time-based) Fixed size, overlapping using differences in record
timestamps

Session (session-based) Dynamically sized, non-overlapping, data-driven

Benefitting from Stream Processing

Pulling the concepts of stream processing all together, the fol-
lowing key elements of stream processing enable many critical
benefits:

¥ Exactly-once: Kafka supports a transaction API that provides
for messages to be processed exactly once, even if duplicate
messages are delivered to a topic.

¥ Stateful and stateless: Stream processing programs can
process only each individual message without regard for
previous messages, or they can aggregate state based on the
history of the messages in a stream.

¥ Time: Windowing and other time-based joins or aggrega-
tions are supported by the Streams API (see the earlier
section “Stream Processing in Kafka" for more information).

¥ CDC: CDC leverages log-based extraction of data to build
new streams and perform in-stream analytics from data that
begins in relational database tables.

¥ Real-time: Stream processing is done in real-time windows
on real-time data, processing one record at a time, rather
than storing messages in batches for processing later.

Stream processing can be complex but also powerful. Table 5-2
describes common stream processing use cases.
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TABLE5-2 Stream Processing Use Cases

Stream Processing Use Case  Description

Real-time analytics KSQL or the Kafka Streams APl is used to
generate analysis against live streams of data,
often computed over defined time windows.

Microservices integration KStreams integrated into microservices allow
each service to process inputs from other
services.

Log analysis KSQL allows filtering of records from log data
sources to look for anomalies or other critical
variations.

Data integration The Streams API and KSQL both support basic
to more-complex data integration scenarios,
using simple SQL-like commands and queries.
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IN THIS CHAPTER

» Planning transaction data streaming
systems

» Maintaining transaction consistency

Chapter 6
Starting Your Journey:
Effective Planning

n this chapter, we explain planning and implementing your

CDC and Apache Kafka streaming architecture. You explore

common characteristics of effective streaming approaches,
including careful pipeline design, standardized process, pooled
resources, granular monitoring, data governance policies, and
productive collaboration. You dive into implementation best prac-
tices, including configuration methods to ensure transaction con-
sistency. We also give you a case study from Generali, a Fortune
100 financial services organization, in implementing CDC and
Apache Kafka.

Planning an Effective Transaction
Data Streaming System

Designing, building, and managing an effective enterprise
streaming platform is tricky business. You need to put efficient
and scalable processes in place that meet service level agreements
(SLAs) and maintain data integrity. The five common, high-level

CHAPTER 6 Starting Your Journey: Effective Planning 33



attributes of effective streaming approaches to transaction data
that span people, process, and technology are as follows:

¥ Effective data pipeline design: Design pipelines to address
three requirements:

Publish transaction record inserts, updates, and deletes,
as well as source schema changes, to the appropriate
topic. Connectors and CDC offerings can achieve this.

Run data integrity checks with an update processor to
ensure that inserts/updates/deletes are processed once
and only once.

Identify and retry errors or processing failures.

3 Standardized process: Data engineers need clear guidance
and guard-rails about how best to operate. This includes a set
of steps, addressing planning, design, data quality, testing,
and production. Developers need a common dictionary and
ontology as they design their streaming analytics algorithms.
These steps help data teams meet business requirements
and efficiently execute projects on time.

» Shared resource pool: Use cases, resource requirements,

@ and usage patterns will vary by line of business and depart-
ment. Supporting them with a common cloud-based platform
T and ideally an automated service menu improves infrastruc-

ture utilization. When it comes to cost, an enterprise-wide,
cloud-based approach is typically more economical than
individual “shadow IT” arrangements.

3 Monitoring: It's critical to monitor state, memory utilization,
throughput, latency, number of partitions, and lags in
creation/population of topics. These and other metrics signal
your ability to meet SLAs from the business and maintain
sustainable loads on the infrastructure.

¥ Data governance: Data governance has several dimensions.
For example, data producers are often the right accountable
parties for data accuracy, using profiling tools, quality checks,
and so on. In this scenario, if Line of Business A publishes
transactions to Kafka for use by Line of Business B, A rather
than B is responsible for source data quality.

Compliance is more often a shared responsibility. For example,
the General Data Protection Regulation (GDPR) requires that all
parties along the pipeline manage European Union citizens'
Personally Identifiable Information (PIl) only in ways that are
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explicitly authorized by the original owners of that data. The
central IT organization should define, monitor usage, and
enforce policies, and then provide reports to the appropriate
internal compliance officer.

To learn more about effective streaming approaches, visit

www

.eckerson.com/articles/building-an-effective-

transactional-data-streaming-system.

Transaction Consistency

Most analytics use cases for transaction data require records to
be accurate, and this requires transaction consistency, which is
the guarantee that committed transactions relate to one another
according to consistent rules imposed by databases or other repos-
itories. Transactions must be committed accurately, atomically, in
order, and only once. Ideally, you’ll maintain the same level of con-
sistency as records travel from source database through each point
in the Kafka streaming architecture. Two methods to consider for
maintaining transaction consistency include the following:

»

»

Topic and partition configuration: Sending all events/
messages for a given group of transactions (for example that
come from the same table) to a single topic and single
partition can be a simple and effective way to maintain
transaction consistency. However, with only one topic, you
can't easily sort messages, which can flood a given consumer
with unneeded records and increase processing overhead.
Using one topic and many partitions can alleviate this
tradeoff, enabling consumers to scale and not be overbur-
dened with unneeded records. Furthermore, by assigning
one message key to each transaction, you can ensure all the
messages for a given transaction land in the same partition
and therefore the same consumer instance.

Metadata: You also can help ensure transaction consistency
by notifying consumer applications when transactions are
ready for processing. This is achieved with, for example,
simple record headers that provide transaction operation
sequence numbers and a “true/false” indicator of whether all
events in a transaction have been processed. In addition, you
should be sure to always start or recover from the beginning
of a transaction to further safeguard transaction consistency.
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UNIFYING THE CUSTOMER
EXPERIENCE WITH CDC
AND KAFKA

Generali Group is one of the leading insurers in the world, with
insurance and investment services to 61 million customers in over

50 countries. Generali Switzerland like its Italian parent, believes its
business is fundamentally based on data. And its IT organization says
unlocking the value of that data is akin to awakening a “sleeping
beauty.” Generali Switzerland seeks to achieve this by implementing a
new data streaming architecture based on CDC and Kafka. With this
architecture, the company intends to create a simple, flexible, and
unified omni-channel customer experience that reduces churn,
increases revenue per customer, and improves operational efficiency.

Generali Switzerland's data team was struggling with several chal-
lenges that are familiar to large and established organizations. Its tra-
ditional processes for replicating data from core Oracle databases to
customer-facing applications were disrupting operations, creating
duplicative datasets, and increasing infrastructure requirements. The
core systems weren't well integrated with new SaaS-based applica-
tions, resulting in days-old customer views, inconsistent data, and
comple, siloed customer interactions. This lack of integration, along
with increasingly complex core application processes, slowed or even
prevented service rollouts.

To right the ship, Generali Switzerland needed to synchronize data on
a real-time basis across communication channels for customers and
internal stakeholders. The company needed to eliminate inefficient,
duplicative datasets, closely integrate legacy and new applications,
and enable rapid development of new IT services. The solution?
Implementing a “data connection platform” that runs on a transaction
data streaming architecture with CDC and Kafka.

Attunity Replicate CDC integrated data and metadata across Kafka
topics in a containerized microservices environment. The platform
enabled Generali Switzerland to discontinue its legacy approach of
repeatedly developing SQL jobs for identifying and copying changed
data. The intuitive Attunity Replicate GUI, applicable to all end points,
reduced configuration time by replacing custom, siloed scripted



procedures. Meanwhile, Attunity Replicate CDC worked with
Confluent Platform to provide efficient transaction data integration
across applications, with easy connectors to enable agile develop-
ment of new software components. You can read more about
Confluent Platform in Chapter 7.

The Generali Switzerland Connection Platform now underpins real-
time, 360-degree customer views so agents can count on a universally
accessible, single source of truth for their interactions. These new
capabilities and opportunities all rest on efficient, scalable, and flexi-
ble change data capture and Kafka technology. For more information
on this case study, visitwww.confluent.io/customers/generali.
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IN THIS CHAPTER

» Understanding Confluent Platform

» Putting Attunity Replicate to work

Chapter 7
Ten Reasons to Choose
Confluent and Attunity

very For Dummies book ends in a chapter called the Part of

Tens. In this chapter, we’ve chosen ten reasons why

Confluent and Attunity products are good choices for trans-
action streaming with Apache Kafka. We’ve divided this chapter
into two sections, focusing on five reasons for each company’s
products. We start with Confluent and end with Attunity.

Seeing How Confluent Event
Streaming Works for You

Confluent Platform and Confluent Cloud, build on Kafka, were
designed to make the deployment and management of Kafka
easier, more reliable, and more secure than Kafka alone. With Con-
fluent, users have the freedom of choice to deploy on any cloud,
public or private, stream across on-premises and public clouds,
as self-managed software or fully-managed service with Conflu-
ent Cloud. Confluent helps you confidently architect and manage a
complete streaming solution for the enterprise in five ways.
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Development and integration flexibility

Confluent Platform easily integrates with many existing systems
as part of a broad and expanding partner ecosystem. The Kafka
Connect API and connectors provide developers, data engineers,
and operators a simple way to stream records between popular
applications, sources, and targets. Some connectors are included
in the platform (as JDBC, S3, HDFS, and Elasticsearch) and
included as part of Confluent Platform. Many more can be down-
loaded from Confluent Hub.

Confluent Hub is an extensive library of prepackaged, ready-to-

‘w install conne.ctors' built by pa'rtn.ers, vendors, and the community

to help you identify and easily integrate with popular data sys-

tecHnicar  tems, databases, and applications. Visit www.confluent.io/hub
STUFF for more info.

The Confluent ecosystem also includes extensive producer and
consumer clients, with support for languages such as Java, C/C++,
Python, Go, and .NET. In addition, a REST Proxy provides univer-
sal Kafka access from any network connected device over HTTP.

Comprehensive management,
monitoring, and control

A key requirement of transaction streaming is to understand and
control Kafka cluster operations. Confluent Control Center provides
a curated, GUI-based dashboard that reveals insights about the
inner workings of your Kafka clusters and the data flowing through
them. You gain key operational and monitoring capabilities, as well
as new confidence to meet service level agreements (SLAs). You
can assess cluster health, availability, and scalability while track-
ing KPIs for end-to-end performance and broker/cluster resource
utilization across environments based on any Kafka client and any
programming language. These KPIs and threshold-based alerts
address record delivery status, latency, throughput/consumer lag,
and missing/duplicate/delayed events.

Control Center also helps you navigate countless configuration
choices to speed Kafka cluster setup and maintenance by proac-
tively recommending configuration parameter values. Users can
easily leverage default settings, understand common peer con-
figurations, and run impact assessments. With these insights, you
can better manage and optimize the Kafka cluster for maximum
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availability, transient high-throughput, or infinite retention. The
results are higher confidence and lower risk.

Scalability and disaster recovery

Many organizations need to replicate Kafka topics across mul-
tiple data centers and public clouds to serve distributed consum-
ers. Confluent Replicator provides a simple and scalable method
of meeting these requirements, seamlessly replicating streams so
you can tap the widest possible array of cloud-based services. You
can scale horizontally, distributing replication workloads across
many CPUs to increase throughput between source and target
clusters.

In addition, Replicator automates the disaster recovery failover
and switchback process to reduce recovery times across geograph-
ically distributed environments. Replicator protects business
critical metadata by creating topics as needed while preserving
the topic configuration in the source cluster. This configuration
can include the number of partitions, replication factors, and any
configuration overrides specified for individual topics. Replicator
also copies the Confluent Schema Registry data (see the next sec-
tion for more info), enabling the recovery of schema information
in a disaster recovery scenario.

Metadata integration and control

With the Confluent Schema Registry, you can ensure applica-
tion development compatibility by centralizing event data struc-
tures, thereby guaranteeing data compatibility as you extend your
streaming platform. Schema Registry provides a RESTful inter-
face for developers to define, share, and adapt standard event
schemas over time while staying backward compatible and future
proof. Native language libraries also exist for Java, Python, and
the languages of the .NET platform to integrate Schema Registry
natively into application code. The Schema Registry stores a ver-
sioned history of all schemas, allowing the evolution of schemas
according to configured compatibility settings. You can increase
reliability by seamlessly accommodating changes such as data-
base column updates without breaking inter-dependencies or
enduring a manual change process. New schemas and versions are
automatically registered, validated, and — if they pose issues —
flagged for developers as they adjust record structures over time.
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Stream processing interface

Confluent products use a stream processing interface called
KSQL. This streaming SQL engine helps developers build powerful
continuous stream processing queries against Kafka with famil-
iar SQL-like semantics. KSQL provides an intuitive interactive
SQL interface for stream processing on Kafka, without the need
to write code in a programming language. You simply perform
stream processing tasks using SQL-like statements. KSQL is scal-
able, elastic, and fault-tolerant, and it supports a wide range of
streaming operations, including data filtering, transformations,
aggregations, joins, and windowing. It enables use cases such as
streaming ETL, scoring, and anomaly detection. (Find out more
about KSQL in Chapter 5.)

Pointing out the Perks of the
Attunity Solution

When it comes to Kafka, Attunity provides a simple, real-time,
and universal solution for converting production databases into
live data streams. Data engineers can use the intuitive graphical
interface of Attunity Replicate to configure any major database to
publish to Kafka systems, applying one consistent process for any
end point type. Attunity minimizes impact on source producers,
optimizes performance, and easily supports “one to many” pub-
lication scenarios. This section tells you how.

Completely automated process

Data engineers use Attunity Replicate to automate the process
for configuring databases to publish to Kafka, using a drag and
drop approach to create a new target endpoint for Kafka, define
the broker server, and browse Confluent Platform environment to
select one or more topics. You can design, execute, and monitor
this task along with hundreds of other data flows enterprise wide.
Attunity Replicate also provides the flexibility to rename schemas
or tables, add or drop columns from the producer definition, and
filter records that are published to the topic stream.

The same flexible process applies to all end point types, help-
ing you add or remove producers in a modular fashion. Attunity
Replicate fully supports and automates all topic and partition
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configuration options available with Kafka, executing and moni-
toring through a centralized, intuitive GUI.

Minimal production impact

Attunity Replicate’s change data capture (CDC) technology
remotely scans transaction logs to identify and replicate source
updates while placing minimal load on source production data-
bases. Row inserts, updates, and deletes, as well as schema
changes, all become records in the live transaction stream to the
Kafka broker. This log-based CDC approach is faster and has a
much lower impact on production workloads than alternatives
such as query-based CDC, which periodically queries the source
database itself to identify recent changes.

Attunity Replicate also minimizes impact by eliminating the need
for software agents on the source system, operating instead on
a separate standalone server. Finally, by capturing only incre-
mental changes, Attunity Replicate CDC reduces the bandwidth
requirements of data transfer as compared with batch replication,
which is especially useful for publication to cloud-based stream-
ing systems. (Check out Chapter 4 for more on CDC.)

Automated data type mapping

Attunity Replicate can automatically map data types from many
heterogeneous sources into a single consumption format. In the
case of Kafka, Attunity Replicate can map to the Avro format,
which serializes data in a compact binary format for downstream
usage by Kafka consumers. Data engineers can greatly reduce
their administrative burden and project time by configuring
these data type conversions with Attunity Replicate’s automated,
drag-and-drop interface instead of mapping and scripting them
individually for each source type. This process makes it faster
and easier to generate topic streams that use a single established
structure for use cases such as event processing, machine learn-
ing, and microservices integration.

Fan-out capabilities

Enterprises often have multiple uses for production transactional
data. The same customer purchase table might need to be con-
sumed real-time by dozens or more systems for fraud prevention,
next best offer recommendations and supply-chain optimization.
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Attunity Replicate enables data engineers to automatically provi-
sion a single database producer, once, that Kafka can then map to
many streams and consumers, eliminating the need for duplica-
tive configuration processes. These fan-out capabilities have the
added benefit of minimizing impact on production workloads.

Metadata integration

Attunity Replicate CDC automatically propagates source schema
changes to any supported target, including Kafka. Data engi-
neers ensure that consumers are synchronized with all relevant
source structures. For example, Attunity Replicate automatically
captures and propagates all the metadata associated with source
schema/DDL changes. This includes database level metadata, for
example, to correctly identify date or time fields that databases
may not otherwise make available to Kafka running on the Kafka
Avro and JSON formats.

Users have two options for metadata integration:

REMEMBER 3 Inject all source metadata directly into the stream. Users
do this with an Attunity Replicate “envelope” that encapsu-
lates all metadata, including message type, headers, and
schema, for decoding by various consumers.

¥ Integrate with the Confluent Schema Registry. This
integration stores and continuously updates schema
versions for consumers through a RESTful interface.

Both these approaches ensure that Kafka consumers fully inte-
grate with and incorporate source metadata updates. For more
on Confluent Schema Registry, see the earlier section “Metadata
integration and control” in this chapter.
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